期刊文献+
共找到16,978篇文章
< 1 2 250 >
每页显示 20 50 100
Gradient‑Layered MXene/Hollow Lignin Nanospheres Architecture Design for Flexible and Stretchable Supercapacitors
1
作者 Haonan Zhang Cheng Hao +6 位作者 Tongtong Fu Dian Yu Jane Howe Kaiwen Chen Ning Yan Hao Ren Huamin Zhai 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期447-462,共16页
With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin... With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials. 展开更多
关键词 hollow lignin nanospheres MXene Gradient-layered architecture Wrinkled electrodes Stretchable supercapacitors
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:4
2
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 SiC/C composites Compositional engineering hollow engineering Microwave absorption Environmental tolerance
下载PDF
Hyperbranched polymer hollow-fiber-composite membranes for pervaporation separation of aromatic/aliphatic hydrocarbon mixtures 被引量:1
3
作者 Tong Liu Hao Sun +5 位作者 Xiangqiong Wang Jie Li Zhanquan Zhang Pei Wu Naixin Wang Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期13-22,共10页
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me... The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. 展开更多
关键词 Aromatic/aliphatic hydrocarbons Hyperbranched polymer PERVAPORATION hollow fiber membrane DIP-COATING
下载PDF
Hollow Ni Mo-based nitride heterojunction with super-hydrophilic/aerophobic surface for efficient urea-assisted hydrogen production 被引量:1
4
作者 Yuying Fan Ying Gu +3 位作者 Dongxu Wang Yanqing Jiao Aiping Wu Chungui Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期428-439,I0009,共13页
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim... Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis. 展开更多
关键词 Hydrogen evolution Transition metal nitrides hollow heterojunctions Urea electrooxidation Super hydrophilic/aerophobic
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
5
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Plasma density enhancement in radio-frequency hollow electrode discharge
6
作者 贺柳良 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期44-51,共8页
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s... The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes. 展开更多
关键词 RF capacitively coupled plasma sources plasma density enhancement hollow cathodeeffect hollow electrode
下载PDF
Hollow cathode effect in radio frequency hollow electrode discharge in argon
7
作者 贺柳良 何锋 欧阳吉庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期496-502,共7页
Radio frequency capacitively coupled plasma source(RF-CCP)with a hollow electrode can increase the electron density through the hollow cathode effect(HCE),which offers a method to modify the spatial profiles of the pl... Radio frequency capacitively coupled plasma source(RF-CCP)with a hollow electrode can increase the electron density through the hollow cathode effect(HCE),which offers a method to modify the spatial profiles of the plasma density.In this work,the variations of the HCE in one RF period are investigated by using a two-dimensional particle-in-cell/Monte-Carlo collision(PIC/MCC)model.The results show that the sheath electric field,the sheath potential drop,the sheath thickness,the radial plasma bulk width,the electron energy distribution function(EEDF),and the average electron energy in the cavity vary in one RF period.During the hollow electrode sheath's expansion phase,the secondary electron heating and sheath oscillation heating in the cavity are gradually enhanced,and the frequency of the electron pendular motion in the cavity gradually increases,hence the HCE is gradually enhanced.However,during the hollow electrode sheath's collapse phase,the secondary electron heating is gradually attenuated.In addition,when interacting with the gradually collapsed hollow electrode sheaths,high-energy plasma bulk electrons in the cavity will lose some energy.Furthermore,the frequency of the electron pendular motion in the cavity gradually decreases.Therefore,during the hollow electrode sheath's collapse phase,the HCE is gradually attenuated. 展开更多
关键词 hollow cathode effect radio frequency hollow electrode particle-in-cell/Monte-Carlo collision(PIC/MCC)model
下载PDF
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
8
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 Atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries
9
作者 QI Zi-xin LUO Sai-nan +4 位作者 RUAN Jia-feng YUAN Tao PANG Yue-peng YANG Jun-he ZHENG Shi-you 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期824-843,共20页
Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t... Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented. 展开更多
关键词 hollow carbon sphere Sodium-sulfur batteries Shuttle effect Potassium-sulfur batteries Electrochemical performance
下载PDF
Hollow tubes constructed by carbon nanotubes self-assembly for CO_(2) capture
10
作者 CHEN Xu-rui WU Jun +1 位作者 GU Li CAO Xue-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2256-2267,共12页
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac... Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture. 展开更多
关键词 carbon nanotubes SELF-ASSEMBLY hollow tubes CO_(2) capture
下载PDF
CaCO_(3)-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage
11
作者 Pengfei Wang Xichen Sun +4 位作者 Liuyan Tang Ningning Li Qing Wang Bicheng Gan Yuezhou Zhang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第6期138-153,共16页
Cervical cancer stands is a formidablemalignancy that poses a significant threat towomen’s health.Calcium overload,a minimally invasive tumor treatment,aims to accumulate an excessive concentration of Ca^(2+)within m... Cervical cancer stands is a formidablemalignancy that poses a significant threat towomen’s health.Calcium overload,a minimally invasive tumor treatment,aims to accumulate an excessive concentration of Ca^(2+)within mitochondria,triggering apoptosis.Copper sulfide(CuS)represents a photothermal mediator for tumor hyperthermia.However,relying solely on thermotherapy often proves insufficient in controlling tumor growth.Curcumin(CUR),an herbal compound with anti-cancer properties,inhibits the efflux of exogenous Ca^(2+)while promoting its excretion from the endoplasmic reticulum into the cytoplasm.To harness these therapeutic modalities,we have developed a nanoplatform that incorporates hollow CuS nanoparticles(NPs)adorned with multiple CaCO_(3) particles and internally loaded with CUR.This nanocomposite exhibits high uptake and easy escape from lysosomes,along with the degradation of surrounding CaCO3,provoking the generation of abundant exogenous Ca^(2+)in situ,ultimately damaging the mitochondria of diseased cells.Impressively,under laser excitation,the CuS NPs demonstrate a photothermal effect that accelerates the degradation of CaCO_(3),synergistically enhancing the antitumor effect through photothermal therapy.Additionally,fluorescence imaging reveals the distribution of these nanovehicles in vivo,indicating their effective accumulation at the tumor site.This nanoplatform shows promising outcomes for tumor-targeting and the effective treatment in a murine model of cervical cancer,achieved through cascade enhancement of calcium overload-based dual therapy. 展开更多
关键词 hollow CuS nanovehicles Tumor-specific synergistic therapy Mitochondrial damage Cascade-enhanced calcium overload
下载PDF
Driving inward growth of lithium metal in hollow microcapsule hosts by heteroatom‐controlled nucleation
12
作者 Siwon Kim Hong Rim Shin +2 位作者 Ki Jae Kim Min‐Sik Park Jong‐Won Lee 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期262-272,共11页
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr... The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries. 展开更多
关键词 hollow carbon hosts lithium metal batteries lithium plating metal-organic frameworks NUCLEATION
下载PDF
Functional Outcomes of Adult Tibia Shaft Fractures Treated with Solid Intramedullary Nails versus Hollow Nails: A Systematic Review
13
作者 Kwadwo Aning Abu Bernard Hammond +5 位作者 Mohammed Issah Suglo Bukari Kizito Kakra Vormawor Ronald Awoonor-Williams David Anyitey-Kokor Paa Kwesi Baidoo Dominic Konadu-Yeboah 《Open Journal of Orthopedics》 2024年第3期149-172,共24页
Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current rev... Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current review aims to compare the outcomes of adult tibia fractures treated with solid nails to those treated with hollow nails. Methods: A search on Scopus, PubMed, and Cochrane Library, using three keywords (Outcome, Tibia shaft fractures, Nail) was conducted in April 2023. Results were compiled and two independent reviewers screened and selected eligible articles After removing duplicates, titles and abstracts were read to exclude ineligible studies. Full-text articles of the remaining papers were read to select eligible studies which were further critically appraised to ascertain their methodological quality. The data extracted from the selected papers were synthesized using a combination of pooling of results, tests of statistical difference (t-test and chi-square) and narrative synthesis methods. Results: A total of 2295 articles were obtained from the databases and citation searching. A total of 9 papers were identified as eligible and included in the review. Findings revealed that there is no statistical difference in the outcomes of tibia fractures treated with either solid or hollow nail groups such as duration of surgery (p = 0.541), rate of delayed and non-union (p = 0.342), and rate of surgical site infections (p = 0.395). Conclusion: Intramedullary nailing of tibia shaft fractures with either solid or hollow nails have similar functional outcomes. 展开更多
关键词 Tibia Shaft Fractures Functional Outcome SIGN Nail hollow Nail
下载PDF
Controllable fabrication of FeCoS_(4) nanoparticles/S-doped bowl-shaped hollow carbon as efficient lithium storage anode
14
作者 Ming Zhou Mengrong Wu +8 位作者 Haiwei Yu Xiangjun Zheng Kuan Shen Xingmei Guo Yuanjun Liu Fu Cao Hongxing Gu Qinghong Kong Junhao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期78-88,共11页
To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through... To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion. 展开更多
关键词 Bimetallic sulfides Bowl-shaped hollow carbon S doping Buffering volume expand Lithium-ion batteries
下载PDF
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
15
作者 Haiping Lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols
16
作者 Zhihao Guo Jiuxuan Zhang +3 位作者 Lanlan Chen Chaoqun Fan Hong Jiang Rizhi Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期157-166,共10页
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named... The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols. 展开更多
关键词 Phenolic compounds hollow ZIF-67 pyrolysis Nitrogen-doped carbon nanotubes Reduction Multiphase reaction Catalysis
下载PDF
Apically guiding electron/mass transfer reaction induced by Ag/FeN_(x)Mott-Schottky effect within a hollow star reactor toward high performance zinc-air batteries
17
作者 Kaixiang Shi Kaixin Wang +7 位作者 Tong Li Junhao Li Jie Ren Xu Li Yonggang Min Zhouguang Lu Wei Tan Quanbing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期106-116,I0004,共12页
The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with e... The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs. 展开更多
关键词 hollow star structure Mott-Schottky effect Apically guiding effect Bifunctional catalysis Zinc-air batteries
下载PDF
Four-channel catalytic micro-reactor based on alumina hollow fiber membrane for efficient catalytic oxidation of CO
18
作者 Baichuan Xu Bin Wang Tao Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期140-147,共8页
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou... The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future. 展开更多
关键词 Catalytic converter Precious metal catalyst Phase inversion method hollow fiber membrane CO oxidation
下载PDF
Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO_(2) electroreduction
19
作者 Kaining Li Yasutaka Kuwahara Hiromi Yamashita 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期66-76,共11页
Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily a... Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond. 展开更多
关键词 hollow carbon sphere Ni nanoparticle CO_(2) reduction Electrocatalysis Single-atom catalyst
下载PDF
Hydrogenation of CO_(2) to p-xylene over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalyst
20
作者 Haifeng Tian Zhiyu Chen +3 位作者 Haowei Huang Fei Zha Yue Chang Hongshan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期725-737,共13页
The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely contr... The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely controlled,and the acid sites on its outer surface were passivated by steam-assisted crystallization method,so that the zeolite exhibits higher aromatic selectivity than sheet HZSM-5 zeolite and greater p-xylene selectivity than chain HZSM-5 zeolite.The tandem catalyst was formed by combining hollow tubular HZSM-5 zeolites with ZnZrO_(x)metal oxides.The para-selectivity of p-xylene reached 76.2%at reaction temperature of 320℃,pressure of 3.0 MPa,and a flow rate of 2400 mL g^(-1)h^(-1)with an H_(2)/CO_(2) molar ratio of 3/1.Further research indicates that the high selectivity of p-xylene is due to the pore structure of hollow tubular HZSM-5 zeolite,which is conducive to the formation of p-xylene.Moreover,the passivation of the acid site located on the outer surface of zeolite effectively prevents the isomerization of p-xylene.The reaction mechanism of CO_(2) hydrogenation over the tandem catalyst was investigated using in-situ diffuse reflectance Fourier transform infrared spectroscopy and density functional theory.The results showed that the CO_(2) to p-xylene followed a methanol-mediated route over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalysts.In addition,the catalyst showed no significant deactivation in the 100 h stability test.This present study provides an effective strategy for the design of catalysts aimed at selectively preparing aromatics through CO_(2)hydrogenation. 展开更多
关键词 hollow tubular HZSM-5 zeolite Tandem catalyst CO_(2)hydrogenation P-XYLENE Reaction mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部