Tungsten has been chosen as one of the most promising candidates as the plasma-facing material in future fusion reactors. Although tungsten has numerous advantages compared with other materials, issues including dust ...Tungsten has been chosen as one of the most promising candidates as the plasma-facing material in future fusion reactors. Although tungsten has numerous advantages compared with other materials, issues including dust are rather difficult to deal with. Dust is produced in fusion devices by energetic plasma-surface interaction. The re-deposition of dust particles could cause the retention of fuel atoms. In this work, tungsten is deposited with deuterium plasma by hollow cathode discharge to simulate the dust production in a tokamak. The morphology of the deposited tungsten can be described as a film with spherical particles on it. Thermal desorption spectra of the deposited tungsten show extremely high desorption of the peak positions. It is also found that there is a maximum retention of deuterium in the deposited tungsten samples due to the dynamic equilibrium of the deposition and sputtering process on the substrates.展开更多
二硫化钨由于具有独特的层状结构、大的层间距等优点,已经成为一种非常有潜力的钠离子电池负极材料,但是其导电性差、充放电过程中易发生体积膨胀的不足限制了它进一步的广泛应用.本文以六氯化钨、硫代乙酰胺以及自制的空心碳壳为原料,...二硫化钨由于具有独特的层状结构、大的层间距等优点,已经成为一种非常有潜力的钠离子电池负极材料,但是其导电性差、充放电过程中易发生体积膨胀的不足限制了它进一步的广泛应用.本文以六氯化钨、硫代乙酰胺以及自制的空心碳壳为原料,采用溶剂热法合成了一种中空杆状结构的C/WS_(2)复合材料,将其用于钠离子电池来改善其上述存在的问题.结果表明,在2 A g^(-1)的电流密度下,循环90圈后,C/WS_(2)电极的比容量仍能达到417.1 mAh g^(-1);在10.0 A g^(-1)的大电流密度下,还具有343.3 mAh g^(^(-1))的比容量.因此,中空杆状C/WS2复合材料具有优异的储钠性能.展开更多
基金Supported by the National Magnetic Confinement Fusion Program under Grant No 2015GB109003the National Natural Science Foundation of China under Grant No 11675010
文摘Tungsten has been chosen as one of the most promising candidates as the plasma-facing material in future fusion reactors. Although tungsten has numerous advantages compared with other materials, issues including dust are rather difficult to deal with. Dust is produced in fusion devices by energetic plasma-surface interaction. The re-deposition of dust particles could cause the retention of fuel atoms. In this work, tungsten is deposited with deuterium plasma by hollow cathode discharge to simulate the dust production in a tokamak. The morphology of the deposited tungsten can be described as a film with spherical particles on it. Thermal desorption spectra of the deposited tungsten show extremely high desorption of the peak positions. It is also found that there is a maximum retention of deuterium in the deposited tungsten samples due to the dynamic equilibrium of the deposition and sputtering process on the substrates.
文摘二硫化钨由于具有独特的层状结构、大的层间距等优点,已经成为一种非常有潜力的钠离子电池负极材料,但是其导电性差、充放电过程中易发生体积膨胀的不足限制了它进一步的广泛应用.本文以六氯化钨、硫代乙酰胺以及自制的空心碳壳为原料,采用溶剂热法合成了一种中空杆状结构的C/WS_(2)复合材料,将其用于钠离子电池来改善其上述存在的问题.结果表明,在2 A g^(-1)的电流密度下,循环90圈后,C/WS_(2)电极的比容量仍能达到417.1 mAh g^(-1);在10.0 A g^(-1)的大电流密度下,还具有343.3 mAh g^(^(-1))的比容量.因此,中空杆状C/WS2复合材料具有优异的储钠性能.