期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Growth and Holographic Storage Properties of Sc, Fe Co-Doped Lithium Niobate Crystals 被引量:1
1
作者 郑威 张乃东 雷清泉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期775-778,共4页
The holographic storage properties of Fe (0.03% (mass fraction) Fe2O3):LiNbO3 doped with Sc at different levels (0, 1%, 2%, 3%) were investigated. The Sc threshold concentration in Fe:LiNbO3 was implied to be ... The holographic storage properties of Fe (0.03% (mass fraction) Fe2O3):LiNbO3 doped with Sc at different levels (0, 1%, 2%, 3%) were investigated. The Sc threshold concentration in Fe:LiNbO3 was implied to be about 3% (mole fraction) because O-H vibration absorption peak of Sc (3%):Fe:LiNbO3 was at 3508 cm^-1, compared with 3484 cm^-1 of crystals with lower Sc doping level. Sc(3%):Fe:LiNbO3 exhibited higher optical damage resistance ability. The threshold intensity (wavelength 488 nm) of Sc (3%):Fe:LiNbO3 was 2.2 ×10^2 W ·cm^-2, two orders of masnitude higher than that of Fe:LiNbO3. Holographic storage properties of the crystals were determined in an extraordinary polarized laser of wavelength 632.8 nm by a two-wave coupling method. It was found that in terms of holographic storage properties, the optimal doping concentration of Sc was 2% (mole fraction) among this crystal series. 展开更多
关键词 lithium niobate crystal Sc doping holographic storage properties rare earths
下载PDF
Holographic Storage Properties of In:Fe:Mn:LiNbO_3 Crystals
2
作者 王淼 王锐 +3 位作者 徐衍岭 杨春晖 徐玉恒 石连升 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第10期1218-1222,共5页
In:Fe:Mn:LiNbO3(LN) crystals were grown in air atmosphere by Czochralski method with different concentration of In (0, 1, 2, 3 mol%) in the melts, while the contents of Fe2O3 and MnO were 0.1 and 0.5 mol%, resp... In:Fe:Mn:LiNbO3(LN) crystals were grown in air atmosphere by Czochralski method with different concentration of In (0, 1, 2, 3 mol%) in the melts, while the contents of Fe2O3 and MnO were 0.1 and 0.5 mol%, respectively. The location of doping ions was analyzed by Ultravioletvisible absorption spectra and differential thermal analysis. The diffraction efficiency (η), writing time (τw) and erasure time (τe) of the crystals were measured by two-beam coupling experiment. The dynamic range and photorefractive sensitivity have also been calculated. The results showed that with the increase of In ions in the melt, the absorption edge of In:Fe:Mn:LN crystal shifts to the violet firstly and then makes the Einstein shift, the Curie temperature of crystal increases firstly and then decreases, the storage ratio speeds up, diffraction efficiency decreases, and dynamic range and photorefractive sensitivity increase. The mechanism of holographic storage properties of In:Fe: Mn:LN crystal with different doping concentration of In^3+ was investigated, suggesting the In: Fe:Mn:LN crystals are excellent holographic storage materiel with better synthetical properties than Fe:Mn:LN crystals. 展开更多
关键词 In:Fe:Mn:LiNbO3 crystal location of doping ions holographic storage properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部