In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
The complex Banach spaces X with values in which every bounded holomorphic function in the unit hall B of C-d(d > 1) has boundary limits almost surely are exactly the spaces with the analytic Radon-Nikodym property...The complex Banach spaces X with values in which every bounded holomorphic function in the unit hall B of C-d(d > 1) has boundary limits almost surely are exactly the spaces with the analytic Radon-Nikodym property. The proof is based on inner Hardy martingales introduced here. The inner Hardy martingales are constructed in terms of inner functions in B and are reasonable discrete approximations for the image processes of the holomorphic Brownian motion under X-valued holomorphic functions in B.展开更多
Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider t...Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use.展开更多
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vi...Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.展开更多
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon...Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.展开更多
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep...Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.展开更多
Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(...Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.展开更多
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi...Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,com...Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.展开更多
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm...Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.展开更多
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect...Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.展开更多
Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications...Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.展开更多
G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducte...G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
China's economic growth and economic development has entered a new stage,and the optimization and upgrading of industrial structure is the core driving force for China to achieve high-quality economic development ...China's economic growth and economic development has entered a new stage,and the optimization and upgrading of industrial structure is the core driving force for China to achieve high-quality economic development during the"14 th Five-Year Plan"period.Property tax has a conductive effect on the upgrading of industrial structure.Therefore,from the perspective of property tax and industrial structure adjustment and the relationship between them,this study summarizes the relevant research of domestic and foreign scholars.On the basis of the research,the paper puts forward some relevant policy suggestions on improving China's property tax and promoting the optimization and upgrading of China's industrial structure.展开更多
The main obstacle to the open sharing of scientific data is the lack of a legal protection system for intellectual property.This article analyzes the progress of research papers on intellectual property in scientific ...The main obstacle to the open sharing of scientific data is the lack of a legal protection system for intellectual property.This article analyzes the progress of research papers on intellectual property in scientific data in China through literature search and statistics.Currently,research subjects are unbalanced,research content is uneven,research methods are intellectual single,and research depth is insufficient.It is recommended that different stakeholders engage in deep cross disciplinary cooperation,further improve China’s legal and policy protection system for scientific data intellectual property,and promote the open sharing of scientific data.展开更多
Virtual property has increasingly become a key issue,particularly regarding its nature,ownership,and goodwill acquisition,all of which are worthy of study.Analyzing these issues can contribute to a better understandin...Virtual property has increasingly become a key issue,particularly regarding its nature,ownership,and goodwill acquisition,all of which are worthy of study.Analyzing these issues can contribute to a better understanding of how to develop laws and regulations to protect virtual property.展开更多
At present,the world is undergoing accelerating changes unseen in a century.With the United States regarding China as a strategic competitor,China-EU relations have become the core of national and global governance.Fo...At present,the world is undergoing accelerating changes unseen in a century.With the United States regarding China as a strategic competitor,China-EU relations have become the core of national and global governance.For this reason,we use the basic theory and tools of Philosophy of Property System to clarify the EU’s characterization of China and accordingly propose the method of judgment and the principle of response.From this,we can get three basic cognitions of“systematic rivalry”,namely mutual exclusion of common cognition(Model A),mutual exclusion and cooperation of personality cognition(Model B),and cooperation of historical cognition(Model C).In order to steadily grasp the nature of“systematic rival”and make it operable,three basic cognitive models(AB,AC,BC,ABC,etc.)are combined,and a comprehensive judgment(ABC+model)is made to adapt to the supranational sovereignty characteristics of the EU.It is believed that the nature of“systematic rivalry”in the“trinity”refers to the main aspects of competition between China and Europe.Therefore,there are three principles for the Philosophy of Property System of“systematic rival”:first,maintain the situation of competition and cooperation;second,there is no fixed mode of competition and cooperation;and third,temporary confrontation and complementarity will lead to new competition and cooperation.展开更多
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first...The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.展开更多
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
文摘The complex Banach spaces X with values in which every bounded holomorphic function in the unit hall B of C-d(d > 1) has boundary limits almost surely are exactly the spaces with the analytic Radon-Nikodym property. The proof is based on inner Hardy martingales introduced here. The inner Hardy martingales are constructed in terms of inner functions in B and are reasonable discrete approximations for the image processes of the holomorphic Brownian motion under X-valued holomorphic functions in B.
文摘Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use.
基金supported by the National Science Foundation under grant DMR#2320355supported by the Department of Energy,Office of Science,Basic Energy Sciences,under Award#DESC0022305(formulation engineering of energy materials via multiscale learning spirals)Computing resources were provided by the ARCH high-performance computing(HPC)facility,which is supported by National Science Foundation(NSF)grant number OAC 1920103。
文摘Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023 and GJJ181022)。
文摘Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.
基金supported by Stability Supports Research Project of Treasury Department(No.197801)Talent Fund of CIAE(No.219213)。
文摘Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.
文摘Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.
基金Funded by the National Natural Science Foundation of China(No.42102345)the Fundamental Research Funds for the Central Universities(No.2023ZKPYJD03)。
文摘Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金funded by a project entitled exploration field evaluation and target optimization of key basins in Chad and Niger(No.2019D-4308)initiated by the scientific research and technology development project of china national petroleum corporation.
文摘Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.
基金supported by Zhejiang Provincial Science and Technology Plan Project(Grant No.2022C01118).
文摘Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.
基金financially supported by the National Natural Science Foundation of China(Nos.U2141205,52371002,and 52374366)the Fundamental Research Funds for the Central Universities(Nos.06109125 and 06930007)Fundamental Research Funds for the Central Universities(No.FRF-BD-23-02).
文摘Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.
基金This work was financially supported by the National Natural Science Foundation of China(52101064)Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z158)Industry-University-Research Cooperation Projects(RH2000002728,RH2000002332,RH2100000263).
文摘Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.
文摘G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
基金Supported by 2023 Jiangxi Provincial Innovation and Entrepreneurship Training Project(202310414021).
文摘China's economic growth and economic development has entered a new stage,and the optimization and upgrading of industrial structure is the core driving force for China to achieve high-quality economic development during the"14 th Five-Year Plan"period.Property tax has a conductive effect on the upgrading of industrial structure.Therefore,from the perspective of property tax and industrial structure adjustment and the relationship between them,this study summarizes the relevant research of domestic and foreign scholars.On the basis of the research,the paper puts forward some relevant policy suggestions on improving China's property tax and promoting the optimization and upgrading of China's industrial structure.
文摘The main obstacle to the open sharing of scientific data is the lack of a legal protection system for intellectual property.This article analyzes the progress of research papers on intellectual property in scientific data in China through literature search and statistics.Currently,research subjects are unbalanced,research content is uneven,research methods are intellectual single,and research depth is insufficient.It is recommended that different stakeholders engage in deep cross disciplinary cooperation,further improve China’s legal and policy protection system for scientific data intellectual property,and promote the open sharing of scientific data.
文摘Virtual property has increasingly become a key issue,particularly regarding its nature,ownership,and goodwill acquisition,all of which are worthy of study.Analyzing these issues can contribute to a better understanding of how to develop laws and regulations to protect virtual property.
基金General Project Supported by the National Social Science Fund of China:“Research on the Philosophy of Property System of Modernization of China’s National Governance System and Governance Capacity”(Project Number:20BZX025).
文摘At present,the world is undergoing accelerating changes unseen in a century.With the United States regarding China as a strategic competitor,China-EU relations have become the core of national and global governance.For this reason,we use the basic theory and tools of Philosophy of Property System to clarify the EU’s characterization of China and accordingly propose the method of judgment and the principle of response.From this,we can get three basic cognitions of“systematic rivalry”,namely mutual exclusion of common cognition(Model A),mutual exclusion and cooperation of personality cognition(Model B),and cooperation of historical cognition(Model C).In order to steadily grasp the nature of“systematic rival”and make it operable,three basic cognitive models(AB,AC,BC,ABC,etc.)are combined,and a comprehensive judgment(ABC+model)is made to adapt to the supranational sovereignty characteristics of the EU.It is believed that the nature of“systematic rivalry”in the“trinity”refers to the main aspects of competition between China and Europe.Therefore,there are three principles for the Philosophy of Property System of“systematic rival”:first,maintain the situation of competition and cooperation;second,there is no fixed mode of competition and cooperation;and third,temporary confrontation and complementarity will lead to new competition and cooperation.
文摘The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.