Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the ...Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in ~ecent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99% accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.展开更多
Development of smart grid technology provides an opportunity to various consumers in context for scheduling their energy utilization pattern by themselves.The main aim of this whole exercise is to minimize energy util...Development of smart grid technology provides an opportunity to various consumers in context for scheduling their energy utilization pattern by themselves.The main aim of this whole exercise is to minimize energy utilization and reduce the peak to average ratio (PAR) of power.The two way flow of information between electric utilities and consumers in smart grid opened new areas of applications.The main component is this management system is energy management controller (EMC),which collects demand response (DR) i.e.real time energy price from various appliances through the home gateway (HG).An optimum energy scheduling pattern is achieved by EMC through the utilization of DR information.This optimum energy schedule is provided to various appliances via HG.The rooftop photovoltaic system used as local generation micro grid in the home and can be integrated to the national grid.Under such energy management scheme,whenever solar generation is more than the home appliances energy demand,extra power is supplied back to the grid.Consequently,different appliances in consumer premises run in the most efficient way in terms of money.Therefore this work provides the comprehensive review of different smart home appliances optimization techniques,which are based on mathematical and heuristic one.展开更多
This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by ind...This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.展开更多
The Internet of Things (IoT) is emerging as an attractive paradigm involving physical perceptions, cyber interactions, social correlations and even cognitive thinking through a cyber-physical-social-thinking hyperspac...The Internet of Things (IoT) is emerging as an attractive paradigm involving physical perceptions, cyber interactions, social correlations and even cognitive thinking through a cyber-physical-social-thinking hyperspace. In this context, energy management with the purposes of energy saving and high efficiency is a challenging issue. In this work, a taxonomy model is established in reference to the IoT layers (i.e., sensor-actuator layer, network layer, and application layer), and IoT energy management is addressed from the perspectives of supply and demand to achieve green perception, communication, and computing. A smart home scenario is presented as a case study involving the main enabling technologies with supply-side, demand-side, and supply-demand balance considerations, and open issues in the field of IoT energy management are also discussed.展开更多
在现有的家庭能量管理系统(home energy management system,HEMS)的基础上增加分布式储能模块组成新的HEMS,并在此基础上提出了一种改进的基于0-1线性整数规划方法的家电最优调度模型。通过此调度模型,用户可以根据各自需求分别实现用...在现有的家庭能量管理系统(home energy management system,HEMS)的基础上增加分布式储能模块组成新的HEMS,并在此基础上提出了一种改进的基于0-1线性整数规划方法的家电最优调度模型。通过此调度模型,用户可以根据各自需求分别实现用电费用最省、用电费用最省同时兼顾满意度或者二氧化碳排放最小的目标。该调度模型无论是在目标函数还是在约束条件上都采用线性化表示的方法,在使用极短的调度时间的同时能够保证调度结果是最优结果。最后通过仿真实验验证了提出方法的有效性以及所提方法能够很好地应对电力公司的削峰填谷要求,具有重要的实际应用价值。实验结果表明,所提方法能够比以往相关研究取得更好的节约费用、减少二氧化碳排放的效果。展开更多
In this paper, we present a novel cloud-based demand side management (DSM) optimization approach for the cost reduction of energy usage in heating, ventilation and air conditioning (HVAC) systems in residential homes ...In this paper, we present a novel cloud-based demand side management (DSM) optimization approach for the cost reduction of energy usage in heating, ventilation and air conditioning (HVAC) systems in residential homes at the district level. The proposed approach achieves optimization through scheduling of HVAC energy usage within permissible bounds set by house users. House smart home energy management (SHEM) devices are connected to the utility/aggregator via a dedicated communication network that is used to enable DSM. Each house SHEM can predict its own HVAC energy usage for the next 24 h using minimalistic deep learning (DL) prediction models. These predictions are communicated to the aggregator, which will then do day ahead optimizations using the proposed game theory (GT) algorithm. The GT model captures the interaction between aggregator and customers and identifies a solution to the GT problem that translates into HVAC energy peak shifting and peak reduction achieved by rescheduling HVAC energy usage. The found solution is communicated by the aggregator to houses SHEM devices in the form of offers via DSM signals. If customers’ SHEM devices accept the offer, then energy cost reduction will be achieved. To validate the proposed algorithm, we conduct extensive simulations with a custom simulation tool based on GridLab-D tool, which is integrated with DL prediction models and optimization libraries. Results show that HVAC energy cost can be reduced by up to 36% while indirectly also reducing the peak-to-average (PAR) and the aggregated net load by up to 9.97%.展开更多
Energy management is being highly regarded throughout the world. High-energy consumption in residential buildings is one of the dominant reasons of excessive energy consumption. There are many recent works on the dema...Energy management is being highly regarded throughout the world. High-energy consumption in residential buildings is one of the dominant reasons of excessive energy consumption. There are many recent works on the demand-side management (DSM) and smart homes to keep control on electricity consumption. The paper is an intelligence to modify patterns, by proposing a time scheduling consumers, such that they can maintain their welfare while saving benefits from time varying tariffs;a model of household loads is proposed;constraints, including daily energy requirements and consumer preferences are considered in the framework, and the model is solved using mixed integer linear programming. The model is developed for three scenarios, and the results are compared: the 1st scenario aims Peak Shaving;the 2nd minimizes Electricity Cost, and the 3rd one, which distinguishes this study from the other related works, is a combination of the 1st and 2nd Scenarios. Goal programming is applied to solve the 3rd scenario. Finally, the best schedules for household loads are presented by analyzing power distribution curves and comparing results obtained by these scenarios. It is shown that for the case study of this paper with the implementation of 3rd scenario, it is possible to gain 7% saving in the electricity cost without any increasing in the lowest peak power consumption.展开更多
In a home energy management system(HEMS),appliances are becoming diversified and intelligent,so that certain simple maintenance work can be completed by appliances themselves.During the measurement,collection and tran...In a home energy management system(HEMS),appliances are becoming diversified and intelligent,so that certain simple maintenance work can be completed by appliances themselves.During the measurement,collection and transmission of electricity load data in a HEMS sensor network,however,problems can be caused on the data due to faulty sensing processes and/or lost links,etc.In order to ensure the quality of retrieved load data,different solutions have been presented,but suffered from low recognition rates and high complexity.In this paper,a validation and repair method is presented to detect potential failures and errors in a domestic energy management system,which can then recover determined load errors and losses.A Kernel Extreme Learning Machine(K-ELM)based model has been employed with a Radial Basis Function(RBF)and optimised parameters for verification and recognition;whilst a Dual-spline method is presented to repair missing load data.According to the experiment results,the method outperforms the traditional B-spline and Cubic-spline methods and can effectively deal with unexpected data losses and errors under variant loss rates in a practical home environment.展开更多
Most of the energy produced in the world is consumed by commercial and residential buildings.With the growth in the global economy and world demographics,this energy demand has become increasingly important.This has l...Most of the energy produced in the world is consumed by commercial and residential buildings.With the growth in the global economy and world demographics,this energy demand has become increasingly important.This has led to higher unit electricity prices,frequent stresses on the main electricity grid and carbon emissions due to inefficient energy management.This paper presents an energy-consumption management system based on time-shifting of loads according to the dynamic day-ahead electricity pricing.This simultaneously reduces the electricity bill and the peaks,while maintaining user comfort in terms of the operating waiting time of appliances.The proposed optimization problem is formulated mathematically in terms of multi-objective integer non-linear programming,which involves constraints and consumer preferences.For optimal scheduling,the management problem is solved using the hybridization of the particle swarm optimization algorithm and the branch-and-bound algorithm.Two techniques are proposed to manage the trade-off between the conflicting objectives.The first technique is the Pareto-optimal solutions classification using supervised learning methods.The second technique is called the lexicographic method.The simulations were performed based on residential building energy consumption,time-of-use pricing(TOU)and critical peak pricing(CPP).The algorithms were implemented in Python.The results of the current work show that the proposed approach is effective and can reduce the electricity bill and the peak-to-average ratio(PAR)by 28% and 49.32%,respectively,for the TOU tariff rate,and 48.91% and 47.87% for the CPP tariff rate by taking into account the consumer’s comfort level.展开更多
The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intellige...The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy.Here,we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm(GWA)and Harmony Search Algorithms(HSA).Moreover,a fusion initiated on HSA and GWA operators is used to optimize energy intake.Furthermore,many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge.Hybridization has proven beneficial in achieving numerous objectives simultaneously,decreasing the peak-to-average ratio and power prices.Widespread MATLAB simulations are cast-off to evaluate the routine of the anticipated method,Harmony GWA(HGWA).The simulations are for a multifamily housing complex outfitted with various cool gadgets.The simulation results indicate that GWA functions better regarding cost savings than HSA.In reputes of PAR,HSA is significantly more effective than GWA.The suggested method reduces costs for single and ten-house construction by up to 2200.3 PKR,as opposed to 503.4 in GWA,398.10 in HSA and 640.3 in HGWA.The suggested approach performed better than HSA and GWA in PAR reduction.For single-family homes in HGWA,GWA and HSA,the reduction in PAR is 45.79%,21.92%and 20.54%,respectively.The hybrid approach,however,performs better than the currently used nature-inspired techniques in terms of Cost and PAR.展开更多
There are wide applications of block-rate pricing schemes in many countries.However,there are no significant studies that apply this common tariff for smart home energy management systems.In this paper,a three-time-fr...There are wide applications of block-rate pricing schemes in many countries.However,there are no significant studies that apply this common tariff for smart home energy management systems.In this paper,a three-time-frame energy management scheme has been proposed for photovoltaic(PV)-powered grid-connected smart homes based on the well-known mixed-integer linear programming optimization technique.This paper provides three original and novel smart home energy management algorithms that depend on the most common residential tariff specifically in developing countries.Three different management concepts have been studied for a typical Egyptian house.The concepts of shifting load,vehicle-to-home and reducing air conditioning have been tested according to a commonly applied slab tariff.The proposed scheme considers the home battery extending lifetime constraints.It also preserves comfortable lifestyle limits for home users according to Arab housing climatic conditions and culture.Moreover,the economic feasibility of integrated PV modules for the studied home has been verified according to the Egyptian tariff.The proposed energy management scheme of PV-powered home reduces the electrical power bill significantly in a wide range from 61%to only 19%of the default case bill according to the applied management technique.展开更多
It is important to achieve an efficient home energy management system(HEMS)because of its role in promoting energy saving and emission reduction for end-users.Two critical issues in an efficient HEMS are identificatio...It is important to achieve an efficient home energy management system(HEMS)because of its role in promoting energy saving and emission reduction for end-users.Two critical issues in an efficient HEMS are identification of user behavior and energy management strategy.However,current HEMS methods usually assume perfect knowledge of user behavior or ignore the strong correlations of usage habits with different applications.This can lead to an insuffi-cient description of behavior and suboptimal management strategy.To address these gaps,this paper proposes non-intrusive load monitoring(NILM)assisted graph reinforcement learning(GRL)for intelligent HEMS decision making.First,a behavior correlation graph incorporating NILM is introduced to represent the energy consumption behavior of users and a multi-label classification model is used to monitor the loads.Thus,efficient identification of user behavior and description of state transition can be achieved.Second,based on the online updating of the behavior correlation graph,a GRL model is proposed to extract information contained in the graph.Thus,reliable strategy under uncer-tainty of environment and behavior is available.Finally,the experimental results on several datasets verify the effec-tiveness of the proposed model.展开更多
With the development of a smart grid and smart home,massive amounts of data can be made available,providing the basis for algorithm training in artificial intelligence applications.These continuous improving condition...With the development of a smart grid and smart home,massive amounts of data can be made available,providing the basis for algorithm training in artificial intelligence applications.These continuous improving conditions are expected to enable the home energy management system(HEMS)to cope with the increasing complexities and uncertainties in the enduser side of the power grid system.In this paper,a home energy management optimization strategy is proposed based on deep Q-learning(DQN)and double deep Q-learning(DDQN)to perform scheduling of home energy appliances.The applied algorithms are model-free and can help the customers reduce electricity consumption by taking a series of actions in response to a dynamic environment.In the test,the DDQN is more appropriate for minimizing the cost in a HEMS compared to DQN.In the process of method implementation,the generalization and reward setting of the algorithms are discussed and analyzed in detail.The results of this method are compared with those of Particle Swarm Optimization(PSO)to validate the performance of the proposed algorithm.The effectiveness of applied data-driven methods is validated by using a real-world database combined with the household energy storage model.展开更多
Smart grid enables consumers to control and sched-ule the consumption pattern of their appliances,minimize energy cost,peak-to-average ratio(PAR)and peak load demand.In this paper,a general architecture of home energy...Smart grid enables consumers to control and sched-ule the consumption pattern of their appliances,minimize energy cost,peak-to-average ratio(PAR)and peak load demand.In this paper,a general architecture of home energy management system(HEMS)is developed in smart grid scenario with novel restricted and multi-restricted scheduling method for the residen-tial customers.The optimization problem is developed under the time of use pricing(TOUP)scheme.To optimize the formulated problem,a powerful meta-heuristic algorithm called grey wolf optimizer(GWO)is utilized,which is compared with particle swarm optimization(PSO)algorithm to show its effectiveness.A rooftop photovoltaic(PV)system is integrated with the system to show the cost effectiveness of the appliances.For analysis,eight different cases are considered under various time scheduling algorithms.展开更多
This paper develops deep reinforcement learning(DRL)algorithms for optimizing the operation of home energy system which consists of photovoltaic(PV)panels,battery energy storage system,and household appliances.Model-f...This paper develops deep reinforcement learning(DRL)algorithms for optimizing the operation of home energy system which consists of photovoltaic(PV)panels,battery energy storage system,and household appliances.Model-free DRL algorithms can efficiently handle the difficulty of energy system modeling and uncertainty of PV generation.However,discretecontinuous hybrid action space of the considered home energy system challenges existing DRL algorithms for either discrete actions or continuous actions.Thus,a mixed deep reinforcement learning(MDRL)algorithm is proposed,which integrates deep Q-learning(DQL)algorithm and deep deterministic policy gradient(DDPG)algorithm.The DQL algorithm deals with discrete actions,while the DDPG algorithm handles continuous actions.The MDRL algorithm learns optimal strategy by trialand-error interactions with the environment.However,unsafe actions,which violate system constraints,can give rise to great cost.To handle such problem,a safe-MDRL algorithm is further proposed.Simulation studies demonstrate that the proposed MDRL algorithm can efficiently handle the challenge from discrete-continuous hybrid action space for home energy management.The proposed MDRL algorithm reduces the operation cost while maintaining the human thermal comfort by comparing with benchmark algorithms on the test dataset.Moreover,the safe-MDRL algorithm greatly reduces the loss of thermal comfort in the learning stage by the proposed MDRL algorithm.展开更多
文摘Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in ~ecent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99% accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.
文摘Development of smart grid technology provides an opportunity to various consumers in context for scheduling their energy utilization pattern by themselves.The main aim of this whole exercise is to minimize energy utilization and reduce the peak to average ratio (PAR) of power.The two way flow of information between electric utilities and consumers in smart grid opened new areas of applications.The main component is this management system is energy management controller (EMC),which collects demand response (DR) i.e.real time energy price from various appliances through the home gateway (HG).An optimum energy scheduling pattern is achieved by EMC through the utilization of DR information.This optimum energy schedule is provided to various appliances via HG.The rooftop photovoltaic system used as local generation micro grid in the home and can be integrated to the national grid.Under such energy management scheme,whenever solar generation is more than the home appliances energy demand,extra power is supplied back to the grid.Consequently,different appliances in consumer premises run in the most efficient way in terms of money.Therefore this work provides the comprehensive review of different smart home appliances optimization techniques,which are based on mathematical and heuristic one.
基金supported by European Regional Development Fund in the "Apulian Technology Clusters SMARTPUGLIA 2020"Program
文摘This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.
文摘The Internet of Things (IoT) is emerging as an attractive paradigm involving physical perceptions, cyber interactions, social correlations and even cognitive thinking through a cyber-physical-social-thinking hyperspace. In this context, energy management with the purposes of energy saving and high efficiency is a challenging issue. In this work, a taxonomy model is established in reference to the IoT layers (i.e., sensor-actuator layer, network layer, and application layer), and IoT energy management is addressed from the perspectives of supply and demand to achieve green perception, communication, and computing. A smart home scenario is presented as a case study involving the main enabling technologies with supply-side, demand-side, and supply-demand balance considerations, and open issues in the field of IoT energy management are also discussed.
文摘在现有的家庭能量管理系统(home energy management system,HEMS)的基础上增加分布式储能模块组成新的HEMS,并在此基础上提出了一种改进的基于0-1线性整数规划方法的家电最优调度模型。通过此调度模型,用户可以根据各自需求分别实现用电费用最省、用电费用最省同时兼顾满意度或者二氧化碳排放最小的目标。该调度模型无论是在目标函数还是在约束条件上都采用线性化表示的方法,在使用极短的调度时间的同时能够保证调度结果是最优结果。最后通过仿真实验验证了提出方法的有效性以及所提方法能够很好地应对电力公司的削峰填谷要求,具有重要的实际应用价值。实验结果表明,所提方法能够比以往相关研究取得更好的节约费用、减少二氧化碳排放的效果。
基金supported by the National Science Foundation(NSF)grant ECCF 1936494.
文摘In this paper, we present a novel cloud-based demand side management (DSM) optimization approach for the cost reduction of energy usage in heating, ventilation and air conditioning (HVAC) systems in residential homes at the district level. The proposed approach achieves optimization through scheduling of HVAC energy usage within permissible bounds set by house users. House smart home energy management (SHEM) devices are connected to the utility/aggregator via a dedicated communication network that is used to enable DSM. Each house SHEM can predict its own HVAC energy usage for the next 24 h using minimalistic deep learning (DL) prediction models. These predictions are communicated to the aggregator, which will then do day ahead optimizations using the proposed game theory (GT) algorithm. The GT model captures the interaction between aggregator and customers and identifies a solution to the GT problem that translates into HVAC energy peak shifting and peak reduction achieved by rescheduling HVAC energy usage. The found solution is communicated by the aggregator to houses SHEM devices in the form of offers via DSM signals. If customers’ SHEM devices accept the offer, then energy cost reduction will be achieved. To validate the proposed algorithm, we conduct extensive simulations with a custom simulation tool based on GridLab-D tool, which is integrated with DL prediction models and optimization libraries. Results show that HVAC energy cost can be reduced by up to 36% while indirectly also reducing the peak-to-average (PAR) and the aggregated net load by up to 9.97%.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
文摘Energy management is being highly regarded throughout the world. High-energy consumption in residential buildings is one of the dominant reasons of excessive energy consumption. There are many recent works on the demand-side management (DSM) and smart homes to keep control on electricity consumption. The paper is an intelligence to modify patterns, by proposing a time scheduling consumers, such that they can maintain their welfare while saving benefits from time varying tariffs;a model of household loads is proposed;constraints, including daily energy requirements and consumer preferences are considered in the framework, and the model is solved using mixed integer linear programming. The model is developed for three scenarios, and the results are compared: the 1st scenario aims Peak Shaving;the 2nd minimizes Electricity Cost, and the 3rd one, which distinguishes this study from the other related works, is a combination of the 1st and 2nd Scenarios. Goal programming is applied to solve the 3rd scenario. Finally, the best schedules for household loads are presented by analyzing power distribution curves and comparing results obtained by these scenarios. It is shown that for the case study of this paper with the implementation of 3rd scenario, it is possible to gain 7% saving in the electricity cost without any increasing in the lowest peak power consumption.
文摘In a home energy management system(HEMS),appliances are becoming diversified and intelligent,so that certain simple maintenance work can be completed by appliances themselves.During the measurement,collection and transmission of electricity load data in a HEMS sensor network,however,problems can be caused on the data due to faulty sensing processes and/or lost links,etc.In order to ensure the quality of retrieved load data,different solutions have been presented,but suffered from low recognition rates and high complexity.In this paper,a validation and repair method is presented to detect potential failures and errors in a domestic energy management system,which can then recover determined load errors and losses.A Kernel Extreme Learning Machine(K-ELM)based model has been employed with a Radial Basis Function(RBF)and optimised parameters for verification and recognition;whilst a Dual-spline method is presented to repair missing load data.According to the experiment results,the method outperforms the traditional B-spline and Cubic-spline methods and can effectively deal with unexpected data losses and errors under variant loss rates in a practical home environment.
基金supported by the Ministry of Higher Education,Scientific Research and Innovation,the Digital Development Agency(DDA)and the Centre National pour la Recherche Scientifique et Technique(CNRST)of Morocco(Alkhawarizmi/2020/39).
文摘Most of the energy produced in the world is consumed by commercial and residential buildings.With the growth in the global economy and world demographics,this energy demand has become increasingly important.This has led to higher unit electricity prices,frequent stresses on the main electricity grid and carbon emissions due to inefficient energy management.This paper presents an energy-consumption management system based on time-shifting of loads according to the dynamic day-ahead electricity pricing.This simultaneously reduces the electricity bill and the peaks,while maintaining user comfort in terms of the operating waiting time of appliances.The proposed optimization problem is formulated mathematically in terms of multi-objective integer non-linear programming,which involves constraints and consumer preferences.For optimal scheduling,the management problem is solved using the hybridization of the particle swarm optimization algorithm and the branch-and-bound algorithm.Two techniques are proposed to manage the trade-off between the conflicting objectives.The first technique is the Pareto-optimal solutions classification using supervised learning methods.The second technique is called the lexicographic method.The simulations were performed based on residential building energy consumption,time-of-use pricing(TOU)and critical peak pricing(CPP).The algorithms were implemented in Python.The results of the current work show that the proposed approach is effective and can reduce the electricity bill and the peak-to-average ratio(PAR)by 28% and 49.32%,respectively,for the TOU tariff rate,and 48.91% and 47.87% for the CPP tariff rate by taking into account the consumer’s comfort level.
基金The authors gratefully acknowledge the Deanship of Scientific Research at Najran University in the Kingdom of Saudi Arabia for funding this work through the Research Groups funding program with the Grant Code Number(NU/RG/SERC/11/7).
文摘The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy.Here,we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm(GWA)and Harmony Search Algorithms(HSA).Moreover,a fusion initiated on HSA and GWA operators is used to optimize energy intake.Furthermore,many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge.Hybridization has proven beneficial in achieving numerous objectives simultaneously,decreasing the peak-to-average ratio and power prices.Widespread MATLAB simulations are cast-off to evaluate the routine of the anticipated method,Harmony GWA(HGWA).The simulations are for a multifamily housing complex outfitted with various cool gadgets.The simulation results indicate that GWA functions better regarding cost savings than HSA.In reputes of PAR,HSA is significantly more effective than GWA.The suggested method reduces costs for single and ten-house construction by up to 2200.3 PKR,as opposed to 503.4 in GWA,398.10 in HSA and 640.3 in HGWA.The suggested approach performed better than HSA and GWA in PAR reduction.For single-family homes in HGWA,GWA and HSA,the reduction in PAR is 45.79%,21.92%and 20.54%,respectively.The hybrid approach,however,performs better than the currently used nature-inspired techniques in terms of Cost and PAR.
基金supported by the project entitled‘Smart Homes Energy Management Strategies’,Project ID:4915,JESOR-2015-Cycle 4,which is sponsored by the Egyptian Academy of Scientific Research and Technology(ASRT),Cairo,Egypt.
文摘There are wide applications of block-rate pricing schemes in many countries.However,there are no significant studies that apply this common tariff for smart home energy management systems.In this paper,a three-time-frame energy management scheme has been proposed for photovoltaic(PV)-powered grid-connected smart homes based on the well-known mixed-integer linear programming optimization technique.This paper provides three original and novel smart home energy management algorithms that depend on the most common residential tariff specifically in developing countries.Three different management concepts have been studied for a typical Egyptian house.The concepts of shifting load,vehicle-to-home and reducing air conditioning have been tested according to a commonly applied slab tariff.The proposed scheme considers the home battery extending lifetime constraints.It also preserves comfortable lifestyle limits for home users according to Arab housing climatic conditions and culture.Moreover,the economic feasibility of integrated PV modules for the studied home has been verified according to the Egyptian tariff.The proposed energy management scheme of PV-powered home reduces the electrical power bill significantly in a wide range from 61%to only 19%of the default case bill according to the applied management technique.
基金supported by State Grid Corporation of China Project“Research on Coordinated Strategy of Multi-type Controllable Resources Based on Collective Intelligence in an Energy”(5100-202055479A-0-0-00).
文摘It is important to achieve an efficient home energy management system(HEMS)because of its role in promoting energy saving and emission reduction for end-users.Two critical issues in an efficient HEMS are identification of user behavior and energy management strategy.However,current HEMS methods usually assume perfect knowledge of user behavior or ignore the strong correlations of usage habits with different applications.This can lead to an insuffi-cient description of behavior and suboptimal management strategy.To address these gaps,this paper proposes non-intrusive load monitoring(NILM)assisted graph reinforcement learning(GRL)for intelligent HEMS decision making.First,a behavior correlation graph incorporating NILM is introduced to represent the energy consumption behavior of users and a multi-label classification model is used to monitor the loads.Thus,efficient identification of user behavior and description of state transition can be achieved.Second,based on the online updating of the behavior correlation graph,a GRL model is proposed to extract information contained in the graph.Thus,reliable strategy under uncer-tainty of environment and behavior is available.Finally,the experimental results on several datasets verify the effec-tiveness of the proposed model.
文摘With the development of a smart grid and smart home,massive amounts of data can be made available,providing the basis for algorithm training in artificial intelligence applications.These continuous improving conditions are expected to enable the home energy management system(HEMS)to cope with the increasing complexities and uncertainties in the enduser side of the power grid system.In this paper,a home energy management optimization strategy is proposed based on deep Q-learning(DQN)and double deep Q-learning(DDQN)to perform scheduling of home energy appliances.The applied algorithms are model-free and can help the customers reduce electricity consumption by taking a series of actions in response to a dynamic environment.In the test,the DDQN is more appropriate for minimizing the cost in a HEMS compared to DQN.In the process of method implementation,the generalization and reward setting of the algorithms are discussed and analyzed in detail.The results of this method are compared with those of Particle Swarm Optimization(PSO)to validate the performance of the proposed algorithm.The effectiveness of applied data-driven methods is validated by using a real-world database combined with the household energy storage model.
文摘Smart grid enables consumers to control and sched-ule the consumption pattern of their appliances,minimize energy cost,peak-to-average ratio(PAR)and peak load demand.In this paper,a general architecture of home energy management system(HEMS)is developed in smart grid scenario with novel restricted and multi-restricted scheduling method for the residen-tial customers.The optimization problem is developed under the time of use pricing(TOUP)scheme.To optimize the formulated problem,a powerful meta-heuristic algorithm called grey wolf optimizer(GWO)is utilized,which is compared with particle swarm optimization(PSO)algorithm to show its effectiveness.A rooftop photovoltaic(PV)system is integrated with the system to show the cost effectiveness of the appliances.For analysis,eight different cases are considered under various time scheduling algorithms.
基金supported by the National Natural Science Foundation of China(No.62002016)the Science and Technology Development Fund,Macao S.A.R.(No.0137/2019/A3)+1 种基金the Beijing Natural Science Foundation(No.9204028)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515111165)。
文摘This paper develops deep reinforcement learning(DRL)algorithms for optimizing the operation of home energy system which consists of photovoltaic(PV)panels,battery energy storage system,and household appliances.Model-free DRL algorithms can efficiently handle the difficulty of energy system modeling and uncertainty of PV generation.However,discretecontinuous hybrid action space of the considered home energy system challenges existing DRL algorithms for either discrete actions or continuous actions.Thus,a mixed deep reinforcement learning(MDRL)algorithm is proposed,which integrates deep Q-learning(DQL)algorithm and deep deterministic policy gradient(DDPG)algorithm.The DQL algorithm deals with discrete actions,while the DDPG algorithm handles continuous actions.The MDRL algorithm learns optimal strategy by trialand-error interactions with the environment.However,unsafe actions,which violate system constraints,can give rise to great cost.To handle such problem,a safe-MDRL algorithm is further proposed.Simulation studies demonstrate that the proposed MDRL algorithm can efficiently handle the challenge from discrete-continuous hybrid action space for home energy management.The proposed MDRL algorithm reduces the operation cost while maintaining the human thermal comfort by comparing with benchmark algorithms on the test dataset.Moreover,the safe-MDRL algorithm greatly reduces the loss of thermal comfort in the learning stage by the proposed MDRL algorithm.