Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi...Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
Blended learning(BL)has been widely adopted to improve students’academic achievements in higher education.However,its success relies mainly on student engagement,which plays an essential role in active learning and p...Blended learning(BL)has been widely adopted to improve students’academic achievements in higher education.However,its success relies mainly on student engagement,which plays an essential role in active learning and provides a rich understanding of students’experiences.The study utilized three self-designed scales-the Teacher Support Scale,Student Engagement Scale,and Student Learning Experience Scale-to gauge and examine the impact and relationship between perceived teacher support,student behavioral engagement,and the intermediary role of learning experiences.A cohort of 899 college students undertaking the obligatory College English course through BL modes across five Chinese universities actively participated by completing a comprehensive questionnaire.The results showed significant correlations between perceived teacher support,learning experience,and behavioral engagement.Perceived teacher support significantly predicted students’behavioral engagement,with socio-affective support exerting the most substantial predictive effects.All predictive effects were partially mediated by learning experience(learning mode,online resources,overall LMS-based learning,interaction with their instructor and peers,and learning outcome).The influence of perceived teacher support on behavioral engagement differed between students who reported the most positive(vs.negative)learning experiences.Suggestions for further research are offered for consideration.展开更多
Background: Nursing students hesitate to choose aged care as a career, and the aged care sectors are on an edge regarding nursing positions. Clinical learning environments may influence nursing students’ career choic...Background: Nursing students hesitate to choose aged care as a career, and the aged care sectors are on an edge regarding nursing positions. Clinical learning environments may influence nursing students’ career choices. Few studies have explored learning environments in nursing homes, although students increasingly have placements there. Objectives: The aim was to produce information for developing nursing students’ learning opportunities in nursing homes. Design: A cross-sectional survey design was used. Settings: The study was conducted at a university college in southeast Norway. Participants: Students in two cohorts of a bachelor degree program in nursing participated, N = 499. Methods: Data were collected on nursing students’ perceptions of clinical learning environments during placements in five nursing homes. A 42-item validated questionnaire with the subscales personalization, individualization, involvement, task orientation, innovation, and satisfaction was used. Data analysis used descriptive statistics, t-tests, and linear regression analysis. Results: Total scores showed overall satisfaction with clinical learning environments in nursing homes. However, innovation subscale scores were very low. First year students had significantly higher scores than third year students on the total scale, and most subscales. Age was significantly associated with total scale scores and subscale satisfaction scores. Higher education and work experience before entering nursing education were significantly associated with involvement subscale scores. Conclusions: Students are more positive than negative about their clinical learning environments. Low valuation of innovation seems to be a consistent finding in studies in both nursing homes and hospitals internationally. For innovative learning strategies to function they must be anchored at the organizational level. Future research should develop and test more innovative learning strategies for nursing students.展开更多
The paper analyzes the current condition of the use of virtual learning environment(VLE) in Zhejiang University of Chinese Medicine. It is indicated that students show a positive attitude toward this technology, but t...The paper analyzes the current condition of the use of virtual learning environment(VLE) in Zhejiang University of Chinese Medicine. It is indicated that students show a positive attitude toward this technology, but the use of it fails to meet students' perception. In light of this, recommendations are made with a view to enhance the use of VLE.展开更多
This paper, firstly, acknowledges the importance of classroom environment and the problems existing in the college English classroom. And then, it offers some ways of improving the classroom environment which is very ...This paper, firstly, acknowledges the importance of classroom environment and the problems existing in the college English classroom. And then, it offers some ways of improving the classroom environment which is very critical to evaluate educational programs and curriculum and provides guidance to teachers who are eager to boost their classroom teaching.展开更多
With the increasing development of economy and society,the 21st century will surely become an era of rapid development of information technology.Based on the macro and micro levels of education in China,this paper int...With the increasing development of economy and society,the 21st century will surely become an era of rapid development of information technology.Based on the macro and micro levels of education in China,this paper introduces the"affordance theory"to analyze and discuss the current situation of College English learning environment in China,and puts forward new goals and principles to promote the future development of College English learning environment in order to better promote its effective transformation.展开更多
Ubiquitous learning is a new type of learning method with rich learning concepts and educational significance. The study of ubiquitous learning began in 1991, and has experienced three stages of gestation, start-up an...Ubiquitous learning is a new type of learning method with rich learning concepts and educational significance. The study of ubiquitous learning began in 1991, and has experienced three stages of gestation, start-up and formation and development.After entering the 21 st century, new technologies and new ideas have emerged endlessly. The change in learning methods has led to the flip of classroom teaching, and ubiquitous learning has become more known as the pace of social development. The current higher vocational education presents the characteristics of disjointed education content, misaligned learning roles, and single teaching form. The integration of ubiquitous learning environment into vocational education teaching is a new direction for the development of vocational education.展开更多
Metacognitive strategies are regarded as advanced strategies in all the learning strategies.This study focuses on the application of metacognitive strategies in English listening in the web-based self-access learning ...Metacognitive strategies are regarded as advanced strategies in all the learning strategies.This study focuses on the application of metacognitive strategies in English listening in the web-based self-access learning environment(WSLE) and tries to provide some references for those students and teachers in the vocational colleges.展开更多
Student engagement in a clinical learning environment is a vital component in the curricula of pre-licensure nursing students, providing an opportunity to combine cognitive, psychomotor, and affective skills. This pap...Student engagement in a clinical learning environment is a vital component in the curricula of pre-licensure nursing students, providing an opportunity to combine cognitive, psychomotor, and affective skills. This paper is significant in Arab world as there is a lack of knowledge, attitude and practice of student involvement in the new clinical learning environment. The purpose of this review article is to describe the experiences and perspectives of the nurse educator in facilitating pre-licensure nursing students’ engagement in the new clinical learning environment. The review suggests that novice students prefer actual engagement in clinical learning facilitated through diversity experiences, shared learning opportunities, student-faculty interaction and active learning. They expressed continuous supervision, ongoing feedback, interpersonal relationship and personal support from nurse educators useful in the clinical practice. However, the value of this review lies in a better understanding of what constitutes quality clinical learning environment from the students’ perspective of engagement in evidence-based nursing, reflective practice, e-learning and simulated case scenarios facilitated by the nurse educators. This review is valuable in planning and implementing innovative clinical and educational experiences for improving the quality of the clinical teaching-learning environment.展开更多
Preceding works tend to explicate affordance through supposing what is happening here and now.They seldom relate it to actual social,diachronic activities,such as foreign language learning.To tackle this issue,this st...Preceding works tend to explicate affordance through supposing what is happening here and now.They seldom relate it to actual social,diachronic activities,such as foreign language learning.To tackle this issue,this study explores how students actualize affordances in technology-enriched language learning environment(TELLE)by examining their perezhivanija(lived and emotional experience),a term borrowed from sociocultural theory.Because an individual’s social life is a developing process or a perezhivanie2,it is necessary to base the research in a dynamic development of language learning to figure out how the affordances are actualized.Narrative interviews were adopted to collect data from three Chinese college students who learn English as a foreign language in a Northeastern university in China.The results showed that due to the students’different past perezhivanija in English learning,their present interpretations of the perceived affordances in TELLE varied.This influenced hugely in their actions taken during their English learning in college to actualize the affordances.The findings indicated that the actualization of affordances is historical,dynamic and developmental instead of static.It does not lie in the autonomy of the students or the teachers,but in the institutional and cultural legitimacy of technology use in student’s social life.The paper contributes to the application of affordance theory in foreign language learning and provides implications to language teaching practice in TELLE.展开更多
Objective:The purpose of this study was to explore,describe and illuminate nursing students'best encounters of caring in the clinical learning environment.Caring for nursing students was emphasized and recommendat...Objective:The purpose of this study was to explore,describe and illuminate nursing students'best encounters of caring in the clinical learning environment.Caring for nursing students was emphasized and recommendations provided to enhance caring for nursing students within their clinical learning environment.Methods:Qualitative data was collected by the researcher using semi-structured individual interviews and an Appreciative Inquiry(AI)methodology.Ten second year nursing students undertaking the bridging course leading to registration as general nurses in terms of Regulation 683 of the South African Nursing Council(SANC)were purposively sampled from 3 private hospitals within the Western Cape.Data was analysed using Giorgi's method.Results:The main theme included the best and'least best'caring practices embedded in the centrality of the heart.The subthemes comprised of the nursing students'experiences of caring literacy and caring illiteracy.The second theme included the creation of best caring practices within a conducive clinical learning environment.Within this theme,the subthemes comprised of the caring attributes required in reflecting best caring practices,as well the creation of a clinical learning environment to optimise caring.Conclusions:The significance and necessity of caring for the nursing student were clearly illustrated and confirmed by participants.Caring was equated to the heart as the core to the nursing students'being.Recommendations for nursing education,management,practice and research were therefore specifically formulated to enhance caring towards nursing students.展开更多
Distributed wireless sensor networks have been shown to be effective for environmental monitoring tasks,in which multiple sensors are deployed in a wide range of the environments to collect information or monitor a pa...Distributed wireless sensor networks have been shown to be effective for environmental monitoring tasks,in which multiple sensors are deployed in a wide range of the environments to collect information or monitor a particular event,Wireless sensor networks,consisting of a large number of interacting sensors,have been successful in a variety of applications where they are able to share information using different transmission protocols through the communication network.However,the irregular and dynamic environment requires traditional wireless sensor networks to have frequent communications to exchange the most recent information,which can easily generate high communication cost through the collaborative data collection and data transmission.High frequency communication also has high probability of failure because of long distance data transmission.In this paper,we developed a novel approach to multi-sensor environment monitoring network using the idea of distributed system.Its communication network can overcome the difficulties of high communication cost and Single Point of Failure(SPOF)through the decentralized approach,which performs in-network computation.Our approach makes use of Boolean networks that allows for a non-complex method of corroboration and retains meaningful information regarding the dynamics of the communication network.Our approach also reduces the complexity of data aggregation process and employee a reinforcement learning algorithm to predict future event inside the environment through the pattern recognition.展开更多
Monitoring students’ level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic s...Monitoring students’ level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic signals (EEG) as a tool to monitor the mental engagement index of novice medicine students during a reasoning process. More precisely, the objectives were first, to track students’ mental engagement evolution in order to investigate whether there were particular sections within the learning environment that aroused the highest engagement level among the students, and, if so, did these sections have an impact on learners’ performance. Experimental analyses showed the same trends in the different resolution phases as well as across the different regions of the environments. However, we noticed a higher engagement index during the treatment identification phase since it aroused more mental effort. Moreover statistically significant effects were found between mental engagement and students’ performance.展开更多
The rapid development of information and communication technology in recent years is associated with a corresponding growth in interest in computer-mediated communication(CMC)-synchronous CMC and asynchronous CMC.Amon...The rapid development of information and communication technology in recent years is associated with a corresponding growth in interest in computer-mediated communication(CMC)-synchronous CMC and asynchronous CMC.Among asynchronous CMC,email communication has attracted more attention of researchers in the field of foreign language learning.This paper will review studies which investigate one aspect of the advantages of email communication-an active environment for foreign language learning.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ense...Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.展开更多
In the course of training farmer college students,there have been a number of problems facing the modern distance education based on digital learning environment,such as weak learning adaptability and ability of farme...In the course of training farmer college students,there have been a number of problems facing the modern distance education based on digital learning environment,such as weak learning adaptability and ability of farmers and diverse learning needs.Using the empirical methods of questionnaire survey and interview,this article conducts an analysis of the farmer college students' digital learning ability and learning effect,and based on the theoretical study and practical achievements,explores some aspects,such as the information literacy and entrepreneurship ability training for farmer college students,the reform of course teaching and practice teaching,and the building of digital learning platform and special resources.And finally some innovative ideas and recommendations are put forth.展开更多
The development and use of Internet of Things(IoT)devices have grown significantly in recent years.Advanced IoT device characteristics are mainly to blame for the wide range of applications that may now be achieved wi...The development and use of Internet of Things(IoT)devices have grown significantly in recent years.Advanced IoT device characteristics are mainly to blame for the wide range of applications that may now be achieved with IoT devices.Corporations have begun to embrace the IoT concept.Identifying true and suitable devices,security faults that might be used for bad reasons,and administration of such devices are only a few of the issues that IoT,a new concept in technological progress,provides.In some ways,IoT device traffic differs from regular device traffic.Devices with particular features can be classified into categories,irrespective of their function or performance.Ever-changing and complex environments,like a smart home,demand this classification scheme.A total of 41 IoT devices were employed in this investigation.To build a multiclass classification model,IoT devices contributed 13 network traffic parameters.To further preprocess the raw data received,preprocessing techniques like Normalization and Dataset Scaling were utilized.Feature engineering techniques can extract features from the text data.A total of 117,423 feature vectors are contained in the dataset after stratification,which are used to further improve the classification model.In this study,a variety of performance indicators were employed to show the performance of the logiboosted algorithms.Logi-XGB scored 80.2%accuracy following application of the logit-boosted algorithms to the dataset for classification,whereas Logi-GBC achieved 77.8%accuracy.Meanwhile,Logi-ABC attained 80.7%accuracy.Logi-CBC,on the other hand,received the highest Accuracy score of 85.6%.The accuracy of Logi-LGBM and Logi-HGBC was the same at 81.37%each.Our suggested Logi-CBC showed the highest accuracy on the dataset when compared to existing Logit-Boosted Algorithms used in earlier studies.展开更多
Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structure...Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches.展开更多
基金supported by the National Science Foundation of China under Grant No.62101467.
文摘Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金Zhejiang Provincial Philosophy and Social Sciences Planning Project from Zhejiang Office of Philosophy and Social Science(21NDJC092YB)Zhejiang Provincial Educational Science Plan Project(2021SCG166)。
文摘Blended learning(BL)has been widely adopted to improve students’academic achievements in higher education.However,its success relies mainly on student engagement,which plays an essential role in active learning and provides a rich understanding of students’experiences.The study utilized three self-designed scales-the Teacher Support Scale,Student Engagement Scale,and Student Learning Experience Scale-to gauge and examine the impact and relationship between perceived teacher support,student behavioral engagement,and the intermediary role of learning experiences.A cohort of 899 college students undertaking the obligatory College English course through BL modes across five Chinese universities actively participated by completing a comprehensive questionnaire.The results showed significant correlations between perceived teacher support,learning experience,and behavioral engagement.Perceived teacher support significantly predicted students’behavioral engagement,with socio-affective support exerting the most substantial predictive effects.All predictive effects were partially mediated by learning experience(learning mode,online resources,overall LMS-based learning,interaction with their instructor and peers,and learning outcome).The influence of perceived teacher support on behavioral engagement differed between students who reported the most positive(vs.negative)learning experiences.Suggestions for further research are offered for consideration.
基金supported by a grant from The Norwegian Nurses Association.
文摘Background: Nursing students hesitate to choose aged care as a career, and the aged care sectors are on an edge regarding nursing positions. Clinical learning environments may influence nursing students’ career choices. Few studies have explored learning environments in nursing homes, although students increasingly have placements there. Objectives: The aim was to produce information for developing nursing students’ learning opportunities in nursing homes. Design: A cross-sectional survey design was used. Settings: The study was conducted at a university college in southeast Norway. Participants: Students in two cohorts of a bachelor degree program in nursing participated, N = 499. Methods: Data were collected on nursing students’ perceptions of clinical learning environments during placements in five nursing homes. A 42-item validated questionnaire with the subscales personalization, individualization, involvement, task orientation, innovation, and satisfaction was used. Data analysis used descriptive statistics, t-tests, and linear regression analysis. Results: Total scores showed overall satisfaction with clinical learning environments in nursing homes. However, innovation subscale scores were very low. First year students had significantly higher scores than third year students on the total scale, and most subscales. Age was significantly associated with total scale scores and subscale satisfaction scores. Higher education and work experience before entering nursing education were significantly associated with involvement subscale scores. Conclusions: Students are more positive than negative about their clinical learning environments. Low valuation of innovation seems to be a consistent finding in studies in both nursing homes and hospitals internationally. For innovative learning strategies to function they must be anchored at the organizational level. Future research should develop and test more innovative learning strategies for nursing students.
文摘The paper analyzes the current condition of the use of virtual learning environment(VLE) in Zhejiang University of Chinese Medicine. It is indicated that students show a positive attitude toward this technology, but the use of it fails to meet students' perception. In light of this, recommendations are made with a view to enhance the use of VLE.
文摘This paper, firstly, acknowledges the importance of classroom environment and the problems existing in the college English classroom. And then, it offers some ways of improving the classroom environment which is very critical to evaluate educational programs and curriculum and provides guidance to teachers who are eager to boost their classroom teaching.
文摘With the increasing development of economy and society,the 21st century will surely become an era of rapid development of information technology.Based on the macro and micro levels of education in China,this paper introduces the"affordance theory"to analyze and discuss the current situation of College English learning environment in China,and puts forward new goals and principles to promote the future development of College English learning environment in order to better promote its effective transformation.
文摘Ubiquitous learning is a new type of learning method with rich learning concepts and educational significance. The study of ubiquitous learning began in 1991, and has experienced three stages of gestation, start-up and formation and development.After entering the 21 st century, new technologies and new ideas have emerged endlessly. The change in learning methods has led to the flip of classroom teaching, and ubiquitous learning has become more known as the pace of social development. The current higher vocational education presents the characteristics of disjointed education content, misaligned learning roles, and single teaching form. The integration of ubiquitous learning environment into vocational education teaching is a new direction for the development of vocational education.
文摘Metacognitive strategies are regarded as advanced strategies in all the learning strategies.This study focuses on the application of metacognitive strategies in English listening in the web-based self-access learning environment(WSLE) and tries to provide some references for those students and teachers in the vocational colleges.
文摘Student engagement in a clinical learning environment is a vital component in the curricula of pre-licensure nursing students, providing an opportunity to combine cognitive, psychomotor, and affective skills. This paper is significant in Arab world as there is a lack of knowledge, attitude and practice of student involvement in the new clinical learning environment. The purpose of this review article is to describe the experiences and perspectives of the nurse educator in facilitating pre-licensure nursing students’ engagement in the new clinical learning environment. The review suggests that novice students prefer actual engagement in clinical learning facilitated through diversity experiences, shared learning opportunities, student-faculty interaction and active learning. They expressed continuous supervision, ongoing feedback, interpersonal relationship and personal support from nurse educators useful in the clinical practice. However, the value of this review lies in a better understanding of what constitutes quality clinical learning environment from the students’ perspective of engagement in evidence-based nursing, reflective practice, e-learning and simulated case scenarios facilitated by the nurse educators. This review is valuable in planning and implementing innovative clinical and educational experiences for improving the quality of the clinical teaching-learning environment.
基金part of the work for the National Project on Social Sciences“Efficacy of Ecological Affordances Actualization in Language Learning Environment in China in the Technology Era”(16BYY093)
文摘Preceding works tend to explicate affordance through supposing what is happening here and now.They seldom relate it to actual social,diachronic activities,such as foreign language learning.To tackle this issue,this study explores how students actualize affordances in technology-enriched language learning environment(TELLE)by examining their perezhivanija(lived and emotional experience),a term borrowed from sociocultural theory.Because an individual’s social life is a developing process or a perezhivanie2,it is necessary to base the research in a dynamic development of language learning to figure out how the affordances are actualized.Narrative interviews were adopted to collect data from three Chinese college students who learn English as a foreign language in a Northeastern university in China.The results showed that due to the students’different past perezhivanija in English learning,their present interpretations of the perceived affordances in TELLE varied.This influenced hugely in their actions taken during their English learning in college to actualize the affordances.The findings indicated that the actualization of affordances is historical,dynamic and developmental instead of static.It does not lie in the autonomy of the students or the teachers,but in the institutional and cultural legitimacy of technology use in student’s social life.The paper contributes to the application of affordance theory in foreign language learning and provides implications to language teaching practice in TELLE.
基金The research study was financially supported by the researcher and the partial funding of Supervisor bursaries as awarded by the University of Johannesburg.
文摘Objective:The purpose of this study was to explore,describe and illuminate nursing students'best encounters of caring in the clinical learning environment.Caring for nursing students was emphasized and recommendations provided to enhance caring for nursing students within their clinical learning environment.Methods:Qualitative data was collected by the researcher using semi-structured individual interviews and an Appreciative Inquiry(AI)methodology.Ten second year nursing students undertaking the bridging course leading to registration as general nurses in terms of Regulation 683 of the South African Nursing Council(SANC)were purposively sampled from 3 private hospitals within the Western Cape.Data was analysed using Giorgi's method.Results:The main theme included the best and'least best'caring practices embedded in the centrality of the heart.The subthemes comprised of the nursing students'experiences of caring literacy and caring illiteracy.The second theme included the creation of best caring practices within a conducive clinical learning environment.Within this theme,the subthemes comprised of the caring attributes required in reflecting best caring practices,as well the creation of a clinical learning environment to optimise caring.Conclusions:The significance and necessity of caring for the nursing student were clearly illustrated and confirmed by participants.Caring was equated to the heart as the core to the nursing students'being.Recommendations for nursing education,management,practice and research were therefore specifically formulated to enhance caring towards nursing students.
基金This research is supported by Natural Science Foundation of Hunan Province(No.2019JJ40145)Scientific Research Key Project of Hunan Education Department(No.19A273)open Fund of Key Laboratory of Hunan Province(2017TP1026).
文摘Distributed wireless sensor networks have been shown to be effective for environmental monitoring tasks,in which multiple sensors are deployed in a wide range of the environments to collect information or monitor a particular event,Wireless sensor networks,consisting of a large number of interacting sensors,have been successful in a variety of applications where they are able to share information using different transmission protocols through the communication network.However,the irregular and dynamic environment requires traditional wireless sensor networks to have frequent communications to exchange the most recent information,which can easily generate high communication cost through the collaborative data collection and data transmission.High frequency communication also has high probability of failure because of long distance data transmission.In this paper,we developed a novel approach to multi-sensor environment monitoring network using the idea of distributed system.Its communication network can overcome the difficulties of high communication cost and Single Point of Failure(SPOF)through the decentralized approach,which performs in-network computation.Our approach makes use of Boolean networks that allows for a non-complex method of corroboration and retains meaningful information regarding the dynamics of the communication network.Our approach also reduces the complexity of data aggregation process and employee a reinforcement learning algorithm to predict future event inside the environment through the pattern recognition.
文摘Monitoring students’ level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic signals (EEG) as a tool to monitor the mental engagement index of novice medicine students during a reasoning process. More precisely, the objectives were first, to track students’ mental engagement evolution in order to investigate whether there were particular sections within the learning environment that aroused the highest engagement level among the students, and, if so, did these sections have an impact on learners’ performance. Experimental analyses showed the same trends in the different resolution phases as well as across the different regions of the environments. However, we noticed a higher engagement index during the treatment identification phase since it aroused more mental effort. Moreover statistically significant effects were found between mental engagement and students’ performance.
文摘The rapid development of information and communication technology in recent years is associated with a corresponding growth in interest in computer-mediated communication(CMC)-synchronous CMC and asynchronous CMC.Among asynchronous CMC,email communication has attracted more attention of researchers in the field of foreign language learning.This paper will review studies which investigate one aspect of the advantages of email communication-an active environment for foreign language learning.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金the Natural Science Foundation of Shaan’xi Province (2005F51).
文摘Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.
基金Supported by Zhejiang Education Science Planning Project(SCG406)
文摘In the course of training farmer college students,there have been a number of problems facing the modern distance education based on digital learning environment,such as weak learning adaptability and ability of farmers and diverse learning needs.Using the empirical methods of questionnaire survey and interview,this article conducts an analysis of the farmer college students' digital learning ability and learning effect,and based on the theoretical study and practical achievements,explores some aspects,such as the information literacy and entrepreneurship ability training for farmer college students,the reform of course teaching and practice teaching,and the building of digital learning platform and special resources.And finally some innovative ideas and recommendations are put forth.
文摘The development and use of Internet of Things(IoT)devices have grown significantly in recent years.Advanced IoT device characteristics are mainly to blame for the wide range of applications that may now be achieved with IoT devices.Corporations have begun to embrace the IoT concept.Identifying true and suitable devices,security faults that might be used for bad reasons,and administration of such devices are only a few of the issues that IoT,a new concept in technological progress,provides.In some ways,IoT device traffic differs from regular device traffic.Devices with particular features can be classified into categories,irrespective of their function or performance.Ever-changing and complex environments,like a smart home,demand this classification scheme.A total of 41 IoT devices were employed in this investigation.To build a multiclass classification model,IoT devices contributed 13 network traffic parameters.To further preprocess the raw data received,preprocessing techniques like Normalization and Dataset Scaling were utilized.Feature engineering techniques can extract features from the text data.A total of 117,423 feature vectors are contained in the dataset after stratification,which are used to further improve the classification model.In this study,a variety of performance indicators were employed to show the performance of the logiboosted algorithms.Logi-XGB scored 80.2%accuracy following application of the logit-boosted algorithms to the dataset for classification,whereas Logi-GBC achieved 77.8%accuracy.Meanwhile,Logi-ABC attained 80.7%accuracy.Logi-CBC,on the other hand,received the highest Accuracy score of 85.6%.The accuracy of Logi-LGBM and Logi-HGBC was the same at 81.37%each.Our suggested Logi-CBC showed the highest accuracy on the dataset when compared to existing Logit-Boosted Algorithms used in earlier studies.
文摘Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches.