Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive data.Traditional detection methods often fail to keep pace with ...Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive data.Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats.This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack detection.Our approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in performance.It demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant loads.Furthermore,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time applications.Designed for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current defenses.This innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats.展开更多
Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the a...Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.展开更多
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R513),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive data.Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats.This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack detection.Our approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in performance.It demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant loads.Furthermore,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time applications.Designed for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current defenses.This innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats.
文摘Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.