This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is apprecia...This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hyper-sonic target persecutions.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
基金partially supported by the Spanish Ministry of Economy and Competitiveness under grant number DPI2015-64170-R(MINECO/FEDER)
文摘This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hyper-sonic target persecutions.