期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates
1
作者 Ha T.T.Dinh Hiromi Kambara +4 位作者 Shuji Matsushita Yoshiteru Aoi Tomonori Kindaichi Noriatsu Ozaki Akiyoshi Ohashi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第6期68-78,共11页
Methane is produced in a microbial electrosynthesis system(MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions.In this study, we demonstrated that el... Methane is produced in a microbial electrosynthesis system(MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions.In this study, we demonstrated that electrotrophic methane production at the biocathode was achieved even at a very low voltage of 0.1 V in an MES, in which abiotic HS-oxidized to SO_(4)^(2-) at the anodic carbon-cloth surface coated with platinum powder. In addition, microbial community analysis revealed the most probable pathway for methane production from electrons. First, electrotrophic H_(2) was produced by syntrophic bacteria, such as Syntrophorhabdus, Syntrophobacter, Syntrophus, Leptolinea, and Aminicenantales, with the direct acceptance of electrons at the biocathode. Subsequently, most of the produced H_(2) was converted to acetate by homoacetogens, such as Clostridium and Spirochaeta 2. In conclusion,the majority of the methane was indirectly produced by a large population of acetoclastic methanogens, namely Methanosaeta, via acetate. Further, hydrogenotrophic methanogens,including Methanobacterium and Methanolinea, produced methane via H_(2). 展开更多
关键词 BIOELECTRICITY homoacetogens Methane production Microbial electrosynthesis system Sulfur oxidation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部