Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some m...Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm.展开更多
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident...Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.展开更多
In this paper, a parallel solution framework for the linear static analysis of large structures on PC clusters is presented. The framework consists of two main steps: data preparation and parallel solution. The parall...In this paper, a parallel solution framework for the linear static analysis of large structures on PC clusters is presented. The framework consists of two main steps: data preparation and parallel solution. The parallel solution is performed by a substructure based method with direct solvers. The aim of the data preparation step is to create the best possible substructures so that the parallel solution time is minimized. An actual structural model was solved utilizing both homogeneous and heterogeneous PC clusters to illustrate the performance and applicability of the presented framework.展开更多
文摘Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm.
文摘Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.
基金the Scientific Research Project Foundation of METU (No. BAP-2007-03-03-09)
文摘In this paper, a parallel solution framework for the linear static analysis of large structures on PC clusters is presented. The framework consists of two main steps: data preparation and parallel solution. The parallel solution is performed by a substructure based method with direct solvers. The aim of the data preparation step is to create the best possible substructures so that the parallel solution time is minimized. An actual structural model was solved utilizing both homogeneous and heterogeneous PC clusters to illustrate the performance and applicability of the presented framework.