In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition di...In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uni- form thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant re- flectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.展开更多
Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskit...Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells(PSCs)using the one-step spin-coating method.Here,we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping,markedly reducing deep-level traps and withstanding local lattice strain,while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9μs.Furthermore,this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment,substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium.As a result,the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%,and the unencapsulated device also demonstrated excellent light stability and humidity stability.This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.展开更多
基金supported by the Shenzhen Basic Research Project of Science and Technology under Grant No.JCYJ20120613112423982
文摘In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uni- form thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant re- flectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.
基金supported by the National Natural Science Foundation of China(62105292)Shaanxi Fundamental Science Research Project for Mathematics and Physics(22JSY015)+3 种基金Young Talent Fund of Xi’an Association for Science and Technology(959202313020)the Natural Science Foundation of Shaanxi Province(2021GXLH-Z-0 and 2020JZ-02)the project of Innovative Team of Shaanxi Province(2020TD-001)the China Fundamental Research Funds for the Central Universities。
文摘Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells(PSCs)using the one-step spin-coating method.Here,we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping,markedly reducing deep-level traps and withstanding local lattice strain,while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9μs.Furthermore,this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment,substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium.As a result,the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%,and the unencapsulated device also demonstrated excellent light stability and humidity stability.This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.