Solutions to the equation of waves motion are derived for homogeneous and transversely isotropic media such as fiber-reinforced composites, and three dimensional slowness surfaces are shown as well. A brief discussion...Solutions to the equation of waves motion are derived for homogeneous and transversely isotropic media such as fiber-reinforced composites, and three dimensional slowness surfaces are shown as well. A brief discussion on the propagation of plane waves is given.Elastic plane waves are characterized by slowness vectors, wave vectors, polarization vectors and group velocity vectors, etc. The results obtained are presented in a coordinate-free form due to the introduction of the crystal axis' orieniation vector which specifies the anisotropy of the media. Therefore, the results are the most general and convenient for further application展开更多
Fourier transform method is used to obtain an approximate solution of Green's tensor to homogeneous and transversely isotropic media like unidirectional fiber re-inforced composites and austenitic stainless steel...Fourier transform method is used to obtain an approximate solution of Green's tensor to homogeneous and transversely isotropic media like unidirectional fiber re-inforced composites and austenitic stainless steel materials in order to provide the theoretical basis for the scattering problems. A comparison to homogeneously isotropic media is presented and a brief discussion of the main features of the solution is given展开更多
Two-dimensional scalar equation for the displacement of steady cross-plane shear (SH) waves in homogeneous and transversely isotropic media like unidirectional fibrous com-posites is given. Then, thrbugh a simple coor...Two-dimensional scalar equation for the displacement of steady cross-plane shear (SH) waves in homogeneous and transversely isotropic media like unidirectional fibrous com-posites is given. Then, thrbugh a simple coordinate system transform, the scalar equation is standardized into a Helmholtz equation. Corresponding integral equations are derived for the scattering problems and boundary element method (BEM) is used to calculate the scattered fields of arbitrarily shaped obstacles with both soft and rigid boudary conditions numerically.A discussion is given on the numerical results which is mainly focused on the influence of the a-nisotropy of the media to the directivity of the scattered fields by circular cylindrical voids.展开更多
文摘Solutions to the equation of waves motion are derived for homogeneous and transversely isotropic media such as fiber-reinforced composites, and three dimensional slowness surfaces are shown as well. A brief discussion on the propagation of plane waves is given.Elastic plane waves are characterized by slowness vectors, wave vectors, polarization vectors and group velocity vectors, etc. The results obtained are presented in a coordinate-free form due to the introduction of the crystal axis' orieniation vector which specifies the anisotropy of the media. Therefore, the results are the most general and convenient for further application
文摘Fourier transform method is used to obtain an approximate solution of Green's tensor to homogeneous and transversely isotropic media like unidirectional fiber re-inforced composites and austenitic stainless steel materials in order to provide the theoretical basis for the scattering problems. A comparison to homogeneously isotropic media is presented and a brief discussion of the main features of the solution is given
文摘Two-dimensional scalar equation for the displacement of steady cross-plane shear (SH) waves in homogeneous and transversely isotropic media like unidirectional fibrous com-posites is given. Then, thrbugh a simple coordinate system transform, the scalar equation is standardized into a Helmholtz equation. Corresponding integral equations are derived for the scattering problems and boundary element method (BEM) is used to calculate the scattered fields of arbitrarily shaped obstacles with both soft and rigid boudary conditions numerically.A discussion is given on the numerical results which is mainly focused on the influence of the a-nisotropy of the media to the directivity of the scattered fields by circular cylindrical voids.