Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and...Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.展开更多
A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbala...A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbalance method.Generalized Boussinesq equation,KP equation,and mKdV equation are chosen as examples to illustrateour method.This approach is also applicable to a large variety of nonlinear evolution equations.展开更多
In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several ki...In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.展开更多
In this paper, the Auto-B?cklund transformation connected with the homogeneous balance method (HB) and the extended tanh-function method are used to construct new exact solutions for the time-dependent coefficients Ca...In this paper, the Auto-B?cklund transformation connected with the homogeneous balance method (HB) and the extended tanh-function method are used to construct new exact solutions for the time-dependent coefficients Calogero-Degasperis (VCCD) equation. New soliton and periodic solutions of many types are obtained. Furthermore, the soliton propagation is discussed under the effect of the variable coefficients.展开更多
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous ba...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.展开更多
In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which...In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.展开更多
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain ...Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.展开更多
Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based...Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.展开更多
Abstract By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Bgcklund transformation (BT) for (3-k l)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtain...Abstract By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Bgcklund transformation (BT) for (3-k l)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained.展开更多
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ...By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.展开更多
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structure of the (2+1) dimensional asymmetric Nizhnik Novikov Veselov equation. A B a¨...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structure of the (2+1) dimensional asymmetric Nizhnik Novikov Veselov equation. A B a¨ cklund transformation was first obtained, and then the richness of the localized coherent structures was found, which was caused by the entrance of two variable separated arbitrary functions, in the model. For some special choices of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, and ring solitons.展开更多
Based on homogeneous balance method, sofiton solutions to a generalized nonlinear Sehr6dinger equation (NLSE) with varying coefficients have been gotten. Our results indicate that a new family of vortex or petal-lik...Based on homogeneous balance method, sofiton solutions to a generalized nonlinear Sehr6dinger equation (NLSE) with varying coefficients have been gotten. Our results indicate that a new family of vortex or petal-like spatial solitons can be formed in the Kerr nonlinear media in the cylindrical symmetric geometry. It is shown by numerical simulation that these soliton profiles are stable.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
A nonlinear transformation and some multi-solition solutions for the (2+1 )-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear tran...A nonlinear transformation and some multi-solition solutions for the (2+1 )-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear transformation, we reduce the (2+ 1)-dimensional GBK system to a simple linear evolution equation. Solving this equation,we can obtain some new explicit exact solutions of the original equations by means of the extended hyperbola function method.展开更多
The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions conta...The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.展开更多
Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by s...Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.展开更多
By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended hom...By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful.展开更多
The propagation characteristics of nonlinear ion–acoustic(IA) solitary waves(SWs) are studied in thermal electron–positron–ion plasma considering the effect of relativistic positron beam. Starting from a set of...The propagation characteristics of nonlinear ion–acoustic(IA) solitary waves(SWs) are studied in thermal electron–positron–ion plasma considering the effect of relativistic positron beam. Starting from a set of fluid equations and using the reductive perturbation technique, we derive a Korteweg–de Vries(KdV) equation which governs the evolution of weakly nonlinear IA SWs in relativistic beam driven plasmas. The properties of the IA soliton are studied, and it is shown that the presence of relativistic positron beam significantly modifies the characteristics of IA solitons.展开更多
By means of extended homogeneous balance method and variable separationapproach, quite a general variable separation solution of the (2+l)-dimensionalBroer-Kaup-Kupershmidt equation is derived. From the variable separ...By means of extended homogeneous balance method and variable separationapproach, quite a general variable separation solution of the (2+l)-dimensionalBroer-Kaup-Kupershmidt equation is derived. From the variable separation solution and by selectingappropriate functions, a new class of (2+1)-dimensional nonpropagating solitary waves are found. Thenovel features exhibited by these new structures are first revealed.展开更多
基金Supported by the National Nature Science Foundation of China(10371070)Supported by the Nature Science Foundation of Educational Committee of Liaoning Province(2021401157)
文摘Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.
基金Supported by the National Natural Science Foundation of China under Grant No. 11071209the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province under Grant No. 10KJBll0011
文摘A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbalance method.Generalized Boussinesq equation,KP equation,and mKdV equation are chosen as examples to illustrateour method.This approach is also applicable to a large variety of nonlinear evolution equations.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671182) Supported by the Foundation and Frontier Technology Research of Henan(082300410060)
文摘In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.
文摘In this paper, the Auto-B?cklund transformation connected with the homogeneous balance method (HB) and the extended tanh-function method are used to construct new exact solutions for the time-dependent coefficients Calogero-Degasperis (VCCD) equation. New soliton and periodic solutions of many types are obtained. Furthermore, the soliton propagation is discussed under the effect of the variable coefficients.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.
基金supported by the National Natural Science Foundation of China (No.10461005)the Ph.D.Programs Foundation of Ministry of Education of China (No.20070128001)the High Education Science Research Program of Inner Mongolia (No.NJZY08057)
文摘In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.
文摘Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
基金国家自然科学基金,NKBRD of China,Doctor Foundation of Education Commission of China
文摘Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.
基金The project supported by the Natural Science Foundation of Inner Mongolia under Grant No. 200408020113 and National Natural Science Foundation of China under Grant No. 40564001
文摘Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.
基金Supported by National Natural Science Foundation of China under Grant No.11071209 the Natural Science Foundation of the Higer Education Institutions of Jiangsu Province under Grant No.10KJB110011
文摘Abstract By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Bgcklund transformation (BT) for (3-k l)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained.
文摘By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structure of the (2+1) dimensional asymmetric Nizhnik Novikov Veselov equation. A B a¨ cklund transformation was first obtained, and then the richness of the localized coherent structures was found, which was caused by the entrance of two variable separated arbitrary functions, in the model. For some special choices of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, and ring solitons.
基金Supported by the Xianning University Foundation of Hubei Province under Grant No.2010CDB05103Xianning University Foundation under Grant No.BK001
文摘Based on homogeneous balance method, sofiton solutions to a generalized nonlinear Sehr6dinger equation (NLSE) with varying coefficients have been gotten. Our results indicate that a new family of vortex or petal-like spatial solitons can be formed in the Kerr nonlinear media in the cylindrical symmetric geometry. It is shown by numerical simulation that these soliton profiles are stable.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
文摘A nonlinear transformation and some multi-solition solutions for the (2+1 )-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear transformation, we reduce the (2+ 1)-dimensional GBK system to a simple linear evolution equation. Solving this equation,we can obtain some new explicit exact solutions of the original equations by means of the extended hyperbola function method.
文摘The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
基金Supported by Colleges and Universities Scientific Research Foundation of Inner Mongolia Autonomous Region under Grant N0. NJZY07139Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 200408020113
文摘Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
文摘By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful.
基金support from UGC-SAP (DRS, Phase Ⅲ) with Sanction order No. F.510/3/DRS-Ⅲ/2015(SAPI)UGC-MRP with F. No. 43-539/2014 (SR)FD Diary No.3668
文摘The propagation characteristics of nonlinear ion–acoustic(IA) solitary waves(SWs) are studied in thermal electron–positron–ion plasma considering the effect of relativistic positron beam. Starting from a set of fluid equations and using the reductive perturbation technique, we derive a Korteweg–de Vries(KdV) equation which governs the evolution of weakly nonlinear IA SWs in relativistic beam driven plasmas. The properties of the IA soliton are studied, and it is shown that the presence of relativistic positron beam significantly modifies the characteristics of IA solitons.
文摘By means of extended homogeneous balance method and variable separationapproach, quite a general variable separation solution of the (2+l)-dimensionalBroer-Kaup-Kupershmidt equation is derived. From the variable separation solution and by selectingappropriate functions, a new class of (2+1)-dimensional nonpropagating solitary waves are found. Thenovel features exhibited by these new structures are first revealed.