A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]-(3+) has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the fo...A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]-(3+) has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the formation of CO, therefore, making it possible to avoid inactivating catalysts and contaminating the hydrogen fuel. Different from conventional reforming method for hydrogen production, no additional alkaline or organic substances are required in this method. Valuable hydrogen can be obtained under ambient pressure at 70 C, corresponding TOF is 83.2 h 1. This is an unprecedented success in reforming methanol to hydrogen. Effects of reaction conditions, such as reaction temperature, initial methanol concentration and the initial p H value of buffer solution on the hydrogen evolution are all systematically investigated. In a certain range, higher reaction temperature will accelerate reaction rate. The slightly acidic condition is conducive to rapid hydrogen production. These findings are of great significance to the present establishment of the carbon-neutral methanol economy.展开更多
Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied in...Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst Ir Cp*Cl_2 bpym for FA dehydrogenation. The turnover frequency(TOF) of the catalyst for FA dehydrogenation is as high as7150 h^(-1)at 50°C, and is up to 144,000 h^(-1)at 90°C. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell(PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen.展开更多
N-methyl-tetrahydroquinolines(MTHQs) are a kind of very useful chemicals, which can be obtained from N-methylation of amines.However, the methylation of quinolines which is a kind of highly unsaturated nitrogen-contai...N-methyl-tetrahydroquinolines(MTHQs) are a kind of very useful chemicals, which can be obtained from N-methylation of amines.However, the methylation of quinolines which is a kind of highly unsaturated nitrogen-containing heterocyclic aromatic compounds has not been reported. In this work, we report the first work for the synthesis of MTHQs by methylation of quinolines using CO_2 and H_2. It was found that Ru(acac)_3-triphos [triphos: 1,1,1-tris(diphenylphosphinomethyl)ethanl] complex was very active and selective for the N-methylation reaction of quinolines, and the yield of the desired product could reach 99%.展开更多
A simple, efficient, and ecofriendly procedure has been developed using propane-l,2,3-triyl tris(hydrogen sulfate) as a catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions. The...A simple, efficient, and ecofriendly procedure has been developed using propane-l,2,3-triyl tris(hydrogen sulfate) as a catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions. The significant features of the present protocol are simplicity, environmentally benign, high yields, no chromatographic separation, and recyclability of the catalyst.展开更多
Magnetocaloric effect and magnetic properties of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 and its hydride La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 were investigated. The Curie temperature of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si...Magnetocaloric effect and magnetic properties of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 and its hydride La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 were investigated. The Curie temperature of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was increased by hydrogen absorption. XRD patterns showed that the structure of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 remained NaZn13-type. The Curie temperature (TC) of the sample was increased from 174 K to 331 K. The homogeneity of the hydrogen absorption for La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 was proven very well by the random measurement of DSC. The magnetic entropy △SM of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 had peak at 326 K. The peak value of-△SM-was 12.3 and 7.8 J/(kg.K) under magnetic field change of 0–2 T and 0–1 T,respectively,which was comparable with Gd5Si2Ge2. The negative slope and inflection point of the Arrott curve indicated that the first-order magnetic transition of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was reserved after hydrogen absorption.展开更多
基金financial support granted by Ministry of Science and Technology of the People's Republic of China(Nos.2016YFA0200700 and 2016YFE0105700)the National Natural Science Foundation of China(Nos.21373264 and 21573275)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20150362)Suzhou Institute of Nano-tech and Nanobionics(No.Y3AAA11004)Thousand Youth Talents Plan(No.Y3BQA11001)
文摘A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]-(3+) has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the formation of CO, therefore, making it possible to avoid inactivating catalysts and contaminating the hydrogen fuel. Different from conventional reforming method for hydrogen production, no additional alkaline or organic substances are required in this method. Valuable hydrogen can be obtained under ambient pressure at 70 C, corresponding TOF is 83.2 h 1. This is an unprecedented success in reforming methanol to hydrogen. Effects of reaction conditions, such as reaction temperature, initial methanol concentration and the initial p H value of buffer solution on the hydrogen evolution are all systematically investigated. In a certain range, higher reaction temperature will accelerate reaction rate. The slightly acidic condition is conducive to rapid hydrogen production. These findings are of great significance to the present establishment of the carbon-neutral methanol economy.
基金financial support granted by Ministry of Science and Technology of China(Nos.2016YFE0105700,2016YFA0200700)the National Natural Science Foundation of China(Nos.21373264,21573275)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20150362)Suzhou Institute of Nano-tech and Nano-bionics(No.Y3AAA11004)Thousand Youth Talents Plan(No.Y3BQA11001)
文摘Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst Ir Cp*Cl_2 bpym for FA dehydrogenation. The turnover frequency(TOF) of the catalyst for FA dehydrogenation is as high as7150 h^(-1)at 50°C, and is up to 144,000 h^(-1)at 90°C. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell(PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen.
基金supported by National Natural Science Foundation of China(21603235,21373234,21533011)Chinese Academy of Sciences(QYZDY-SSW-SLH013)the Recruitment Program of Global Youth Experts of China
文摘N-methyl-tetrahydroquinolines(MTHQs) are a kind of very useful chemicals, which can be obtained from N-methylation of amines.However, the methylation of quinolines which is a kind of highly unsaturated nitrogen-containing heterocyclic aromatic compounds has not been reported. In this work, we report the first work for the synthesis of MTHQs by methylation of quinolines using CO_2 and H_2. It was found that Ru(acac)_3-triphos [triphos: 1,1,1-tris(diphenylphosphinomethyl)ethanl] complex was very active and selective for the N-methylation reaction of quinolines, and the yield of the desired product could reach 99%.
基金Firoozabad University Research Council for the partialfinancial support
文摘A simple, efficient, and ecofriendly procedure has been developed using propane-l,2,3-triyl tris(hydrogen sulfate) as a catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions. The significant features of the present protocol are simplicity, environmentally benign, high yields, no chromatographic separation, and recyclability of the catalyst.
基金Project supported by the National Basic Research Program of China (2006CB601101)the National High Technology Research and Development Program of China (2007AA03Z440)the National Natural Science Foundation of China (50731007)
文摘Magnetocaloric effect and magnetic properties of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 and its hydride La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 were investigated. The Curie temperature of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was increased by hydrogen absorption. XRD patterns showed that the structure of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 remained NaZn13-type. The Curie temperature (TC) of the sample was increased from 174 K to 331 K. The homogeneity of the hydrogen absorption for La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 was proven very well by the random measurement of DSC. The magnetic entropy △SM of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 had peak at 326 K. The peak value of-△SM-was 12.3 and 7.8 J/(kg.K) under magnetic field change of 0–2 T and 0–1 T,respectively,which was comparable with Gd5Si2Ge2. The negative slope and inflection point of the Arrott curve indicated that the first-order magnetic transition of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was reserved after hydrogen absorption.