期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dependence of impact regime boundaries on the initial temperatures of projectiles and targets
1
作者 Stefano Signetti Andreas Heine 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期49-57,共9页
Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of gr... Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial,and generally elevated,temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact,for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result,for example,from aerodynamic forces acting onto a projectile during atmospheric flight,explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events,generally known since the 1960s,but often not considered thoroughly in impact studies. 展开更多
关键词 Ballistic impact Thermal effects Metallic targets Energy partitioning homologous temperature
下载PDF
Homologous temperature of olivine: Implications for creep of the upper mantle and fabric transitions in olivine 被引量:5
2
作者 WANG Qin 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第6期1138-1156,共19页
The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystal... The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/Tm of olivine with depth allows us to compare the strength of the up- per mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/Tm of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/Tm of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/Tm 〉 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/Tm is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/Tm of olivine need further investigation. Below 6.4 GPa (〈200 kin), T/TIn of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12-10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/TIn〉 0.55-0.60. When T/Tm〈 0.55-0.60, [001] slip is easier and low T/Tm favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/Tm. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experi- ments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy. 展开更多
关键词 OLIVINE homologous temperature Lattice preferred orientation Water Seismic anisotropy Upper mantle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部