A partial order on the set of the prime knots can be defined by the existence of a surjective homomorphism between knot groups. In the previous paper, we determined the partial order in the knot table. In this paper, ...A partial order on the set of the prime knots can be defined by the existence of a surjective homomorphism between knot groups. In the previous paper, we determined the partial order in the knot table. In this paper, we prove that 31 and 41 are minimal elements. Further, we study which surjection a pair of a periodic knot and its quotient knot induces, and which surjection a degree one map can induce.展开更多
基金Grand-in-Aid for Scientific Research (No.17540064 and No.18840008)
文摘A partial order on the set of the prime knots can be defined by the existence of a surjective homomorphism between knot groups. In the previous paper, we determined the partial order in the knot table. In this paper, we prove that 31 and 41 are minimal elements. Further, we study which surjection a pair of a periodic knot and its quotient knot induces, and which surjection a degree one map can induce.