Let E be a compact Lie group, G a closed subgroup of E, and H a closed normal subgroup of G . For principal fibre bundle (E,p, E/G;G) and (E/H,p′,E/G;G/H), the relation between aut G(E) ...Let E be a compact Lie group, G a closed subgroup of E, and H a closed normal subgroup of G . For principal fibre bundle (E,p, E/G;G) and (E/H,p′,E/G;G/H), the relation between aut G(E) (resp. aut * G(E) ) and aut G/H (E/H) (resp.aut * G/H (E/H)) is investigated by using bundle map theory and transformation group theory. It will enable us to compute the group F G(E) (resp. E G(E)) while the group F G/H (E/H) is known.展开更多
in this note, we answer positively a question by Belegradek and Kapovitch about the relation between rational homotopy theory and a problem in Riemannian geometry which asks that total spaces of which vector bundles o...in this note, we answer positively a question by Belegradek and Kapovitch about the relation between rational homotopy theory and a problem in Riemannian geometry which asks that total spaces of which vector bundles over compact non-negative curved manifolds admit (complete) metrics with non-negative curvature.展开更多
An isoparametric family in the unit sphere consists of parallel isoparametric hypersurfaces and their two focal submanifolds.The present paper has two parts.The first part investigates topology of the isoparametric fa...An isoparametric family in the unit sphere consists of parallel isoparametric hypersurfaces and their two focal submanifolds.The present paper has two parts.The first part investigates topology of the isoparametric families,namely the homotopy,homeomorphism,or diffeomorphism types,parallelizability,as well as the Lusternik-Schnirelmann category.This part extends substantially the results of Wang(J Differ Geom 27:55-66,1988).The second part is concerned with their curvatures;more precisely,we determine when they have non-negative sectional curvatures or positive Ricci curvatures with the induced metric.展开更多
文摘Let E be a compact Lie group, G a closed subgroup of E, and H a closed normal subgroup of G . For principal fibre bundle (E,p, E/G;G) and (E/H,p′,E/G;G/H), the relation between aut G(E) (resp. aut * G(E) ) and aut G/H (E/H) (resp.aut * G/H (E/H)) is investigated by using bundle map theory and transformation group theory. It will enable us to compute the group F G(E) (resp. E G(E)) while the group F G/H (E/H) is known.
文摘in this note, we answer positively a question by Belegradek and Kapovitch about the relation between rational homotopy theory and a problem in Riemannian geometry which asks that total spaces of which vector bundles over compact non-negative curved manifolds admit (complete) metrics with non-negative curvature.
基金partially supported by the NSFC(Nos.11722101,11871282,11931007)BNSF(Z190003)+1 种基金Nankai Zhide FoundationBeijing Institute of Technology Research Fund Program for Young Scholars.
文摘An isoparametric family in the unit sphere consists of parallel isoparametric hypersurfaces and their two focal submanifolds.The present paper has two parts.The first part investigates topology of the isoparametric families,namely the homotopy,homeomorphism,or diffeomorphism types,parallelizability,as well as the Lusternik-Schnirelmann category.This part extends substantially the results of Wang(J Differ Geom 27:55-66,1988).The second part is concerned with their curvatures;more precisely,we determine when they have non-negative sectional curvatures or positive Ricci curvatures with the induced metric.