Irregular honeycomb structures occur abundantly in nature and in man-made products,and are an active area of research.In this paper,according to the optimization of regular honeycomb structures,two types of irregular ...Irregular honeycomb structures occur abundantly in nature and in man-made products,and are an active area of research.In this paper,according to the optimization of regular honeycomb structures,two types of irregular honeycomb structures with both positive and negative Poisson’s ratios are presented.The elastic properties of irregular honeycombs with varying structure angles were investigated through a combination of material mechanics and structural mechanics methods,in which the axial deformation of the rods was considered.The numerical results show that axial deformation has a significant influence on the elastic properties of irregular honeycomb structures.The elastic properties of the structure can be considered by the enclosed area of the unit structure,the shape of the unit structure,and the elastic properties of the original materials.The elastic properties considering the axial deformation of rods studied in this study can provide a reference for other scholars.展开更多
In this paper,an innovative type of thin-walled structures,the convex-concave honeycomb columns(CCHCs)with transverse negative Poisson’s ratio(NPR),is proposed for energy absorbers by replacing the cell walls of squa...In this paper,an innovative type of thin-walled structures,the convex-concave honeycomb columns(CCHCs)with transverse negative Poisson’s ratio(NPR),is proposed for energy absorbers by replacing the cell walls of square honeycomb lattice columns with sine-shaped or zigzag-shaped walls of equal mass.Numerical simulations show that,under axial impact,contrary to the conventional square honeycomb columns of equal mass,the transverse cross section of NPR CCHC shrinks inward,making the cell walls of CCHC contact and interact sufficiently with each other and thus dissipate the impact energy much more effectively.By suitably adjusting the transverse NPR,the CCHC can have the combined advantages of effective total energy absorption,high specific energy absorption and low maximum peak crushing force.The research of this paper provides a new strategy for the design of high-performance energy absorbers widely used in the engineering fields of vehicle engineering,aerospace engineering etc.展开更多
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.310812161003)Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2016JM5035).
文摘Irregular honeycomb structures occur abundantly in nature and in man-made products,and are an active area of research.In this paper,according to the optimization of regular honeycomb structures,two types of irregular honeycomb structures with both positive and negative Poisson’s ratios are presented.The elastic properties of irregular honeycombs with varying structure angles were investigated through a combination of material mechanics and structural mechanics methods,in which the axial deformation of the rods was considered.The numerical results show that axial deformation has a significant influence on the elastic properties of irregular honeycomb structures.The elastic properties of the structure can be considered by the enclosed area of the unit structure,the shape of the unit structure,and the elastic properties of the original materials.The elastic properties considering the axial deformation of rods studied in this study can provide a reference for other scholars.
基金supported by the National Natural Science Foundation of China(Grant Nos.12021002,12072222,12132010 and 11991032)the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.SKLTESKF1901).
文摘In this paper,an innovative type of thin-walled structures,the convex-concave honeycomb columns(CCHCs)with transverse negative Poisson’s ratio(NPR),is proposed for energy absorbers by replacing the cell walls of square honeycomb lattice columns with sine-shaped or zigzag-shaped walls of equal mass.Numerical simulations show that,under axial impact,contrary to the conventional square honeycomb columns of equal mass,the transverse cross section of NPR CCHC shrinks inward,making the cell walls of CCHC contact and interact sufficiently with each other and thus dissipate the impact energy much more effectively.By suitably adjusting the transverse NPR,the CCHC can have the combined advantages of effective total energy absorption,high specific energy absorption and low maximum peak crushing force.The research of this paper provides a new strategy for the design of high-performance energy absorbers widely used in the engineering fields of vehicle engineering,aerospace engineering etc.