Using a new tortoise coordinate transformation,we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time,and o...Using a new tortoise coordinate transformation,we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time,and obtain the event horizon surface gravity and the Hawking temperature on that event horizon.The results show that there is a crossing of particle energy near the event horizon.We derive the maximum overlap of the positive and negative energy levels.It is also found that the Hawking temperature of a black hole depends not only on the time,but also on the angle.There is a problem of dimension in the usual tortoise coordinate,so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10873003,11045005,and 11273009)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6090739)
文摘Using a new tortoise coordinate transformation,we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time,and obtain the event horizon surface gravity and the Hawking temperature on that event horizon.The results show that there is a crossing of particle energy near the event horizon.We derive the maximum overlap of the positive and negative energy levels.It is also found that the Hawking temperature of a black hole depends not only on the time,but also on the angle.There is a problem of dimension in the usual tortoise coordinate,so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable.