The tripod foundation(TF)is a prevalent foundation configuration in contemporary engineering practices.In comparison to a single pile,TF comprised interconnected individual piles,resulting in enhanced bearing capacity...The tripod foundation(TF)is a prevalent foundation configuration in contemporary engineering practices.In comparison to a single pile,TF comprised interconnected individual piles,resulting in enhanced bearing capacity and stability.A physical model test was conducted within a sandy soil foundation,systematically varying the length-to-diameter ratio of the TF.The investigation aimed to comprehend the impact of altering the height of the central bucket on the historical horizontal bearing capacity of the foundation in saturated sand.Additionally,the study scrutinized the historical consequences of soil pressure and pore water pressure surrounding the bucket throughout the loading process.The historical findings revealed a significant enhancement in the horizontal bearing capacity of the TF under undrained conditions.When subjected to a historical horizontal loading angle of 0°for a single pile,the multi-bucket foundation exhibited superior historical bearing capacity compared to a single-pile foundation experiencing a historical loading angle of 180°under pulling conditions.With each historical increment in bucket height from 150 mm to 350 mm in 100 mm intervals,the historical horizontal bearing capacity of the TF exhibited an approximately 75%increase relative to the 150 mm bucket height,indicating a proportional relationship.Importantly,the historical internal pore water pressure within the bucket foundation remained unaffected by drainage conditions during loading.Conversely,undrained conditions led to a historical elevation in pore water pressure at the lower side of the pressure bucket.Consequently,in practical engineering applications,the optimization of the historical bearing efficacy of the TF necessitated the historical closure of the valve atop the foundation to sustain internal negative pressure within the bucket.This historical measure served to augment the historical horizontal bearing capacity.Simultaneously,historical external loads,such as wind,waves,and currents,were directed towards any individual bucket within the TF for optimal historical performance.展开更多
The horizontal bearing capacity of the screw pile and monopile was analyzed by model tests.Results showed that the horizontal bearing capacity of the screw pile was significantly greater than that of the monopile unde...The horizontal bearing capacity of the screw pile and monopile was analyzed by model tests.Results showed that the horizontal bearing capacity of the screw pile was significantly greater than that of the monopile under the same loading conditions.With the increase in horizontal loading speed,the ultimate horizontal bearing capacity of the two piles also increases,and the difference decreases gradually.Moreover,the influence of vertical loading on the horizontal bearing capacity of screw pile and monopile is studied at the horizontal loading speed of 2 mm s-1.The findings indicate that vertical load evidently affects the horizontal bearing capacity of common piles,but slightly influences the horizontal bearing capacity of screw piles.展开更多
文摘The tripod foundation(TF)is a prevalent foundation configuration in contemporary engineering practices.In comparison to a single pile,TF comprised interconnected individual piles,resulting in enhanced bearing capacity and stability.A physical model test was conducted within a sandy soil foundation,systematically varying the length-to-diameter ratio of the TF.The investigation aimed to comprehend the impact of altering the height of the central bucket on the historical horizontal bearing capacity of the foundation in saturated sand.Additionally,the study scrutinized the historical consequences of soil pressure and pore water pressure surrounding the bucket throughout the loading process.The historical findings revealed a significant enhancement in the horizontal bearing capacity of the TF under undrained conditions.When subjected to a historical horizontal loading angle of 0°for a single pile,the multi-bucket foundation exhibited superior historical bearing capacity compared to a single-pile foundation experiencing a historical loading angle of 180°under pulling conditions.With each historical increment in bucket height from 150 mm to 350 mm in 100 mm intervals,the historical horizontal bearing capacity of the TF exhibited an approximately 75%increase relative to the 150 mm bucket height,indicating a proportional relationship.Importantly,the historical internal pore water pressure within the bucket foundation remained unaffected by drainage conditions during loading.Conversely,undrained conditions led to a historical elevation in pore water pressure at the lower side of the pressure bucket.Consequently,in practical engineering applications,the optimization of the historical bearing efficacy of the TF necessitated the historical closure of the valve atop the foundation to sustain internal negative pressure within the bucket.This historical measure served to augment the historical horizontal bearing capacity.Simultaneously,historical external loads,such as wind,waves,and currents,were directed towards any individual bucket within the TF for optimal historical performance.
基金funded by the National Natural Science Foundation of China(No.51779171)。
文摘The horizontal bearing capacity of the screw pile and monopile was analyzed by model tests.Results showed that the horizontal bearing capacity of the screw pile was significantly greater than that of the monopile under the same loading conditions.With the increase in horizontal loading speed,the ultimate horizontal bearing capacity of the two piles also increases,and the difference decreases gradually.Moreover,the influence of vertical loading on the horizontal bearing capacity of screw pile and monopile is studied at the horizontal loading speed of 2 mm s-1.The findings indicate that vertical load evidently affects the horizontal bearing capacity of common piles,but slightly influences the horizontal bearing capacity of screw piles.