A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numeri...A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.展开更多
Structures undergoing inelastic displacements during earthquake ground motions are known to sustain some amount of residual displacements, which may make them unusable or unsafe. In this study an attempt is made to es...Structures undergoing inelastic displacements during earthquake ground motions are known to sustain some amount of residual displacements, which may make them unusable or unsafe. In this study an attempt is made to estimate residual displacements for elastic-perfectly-plastic single-degree-of-freedom oscillators with a given lateral strength ratio. It is observed in the case of a class of ground motions that there are no trends in the dependence of residual displacement on the temporal features of the ground motion, and thus any estimation of residual displacements should be carried out only in the statistical sense. Statistical estimation of residual displacement spectrum via normalization with respect to inelastic or elastic spectral displacements is considered, and it is found that normalization with respect to inelastic spectral displacements is preferable. Expressions for residual displacement spectra are proposed for both types of normalizations and for the givenlateral-strength-ratio type oscillators.展开更多
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events ...Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.展开更多
A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizonta...A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizontal and vertical ground motions. The hybrid control platform, on which microelectronics equipment is installed, is mounted on a building floor through a series of passive mounts and controlled by hydraulic actuators in both horizontal and vertical directions. The control platform is an elastic body with significant bending modes of vibration, and a sub-optimal control algorithm is used to manipulate the hydraulic actuators with actuator dynamics included. The finite element model and the equations of motion of the coupled platform-building system are then established in the absolute coordinate to facilitate the feedback control and performance evaluation of the platform. The horizontal and vertical ground vibrations at the base of the building induced by nearby moving road vehicles are assumed to be stationary random processes. A typical three-story microelectronics building is selected as a case study. The case study shows that the vertical vibration of the microelectronics building is higher than the horizontal. The use of a hybrid control platform can effectively reduce both horizontal and vertical microvibrations of the microelectronics equipment to the level which satisfies the stringent microscale velocity requirement specified in the Bolt Beranek & Newman (BBN) criteria.展开更多
This paper evaluates possible directional effects from strong ground motions recorded during the last four significant subcrustal earthquakes produced in the Vrancea seismic zone(Romania) in August 1986(Mw=7.1),Ma...This paper evaluates possible directional effects from strong ground motions recorded during the last four significant subcrustal earthquakes produced in the Vrancea seismic zone(Romania) in August 1986(Mw=7.1),May 1990(Mw=6.9 and 6.4) and October 2004(Mw=6.0).Several measures of the horizontal component of the ground motion given in the literature(Boore et al.,2006;Boore,2010) are computed and are related to the geometric mean of the as-recorded horizontal components.ANOVA method is applied in order to quantify the influence of the earthquake magnitude and of the soil class on some strong ground motion parameters(e.g.Arias intensity,PGV/PGA,or mean period TM).The study of the directional effects is performed using the distribution of IJMAand of the rotation angle corresponding to a measure of the horizontal component of the ground motion(RotD 100) and the results reveal a visible directional pattern for IJMA,while in the case of RotD100 the directional patterns are less visible.展开更多
基金Supported by Tianjin Scientific Development Foundation (No.013112811-1) .
文摘A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.
文摘Structures undergoing inelastic displacements during earthquake ground motions are known to sustain some amount of residual displacements, which may make them unusable or unsafe. In this study an attempt is made to estimate residual displacements for elastic-perfectly-plastic single-degree-of-freedom oscillators with a given lateral strength ratio. It is observed in the case of a class of ground motions that there are no trends in the dependence of residual displacement on the temporal features of the ground motion, and thus any estimation of residual displacements should be carried out only in the statistical sense. Statistical estimation of residual displacement spectrum via normalization with respect to inelastic or elastic spectral displacements is considered, and it is found that normalization with respect to inelastic spectral displacements is preferable. Expressions for residual displacement spectra are proposed for both types of normalizations and for the givenlateral-strength-ratio type oscillators.
基金Supported by National Natural Science Foundation of China Under Grant No.90715005,No.NCET-07-0186 and No.200802860007
文摘Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.
基金CERG competitive research grant (Polyu 5054/02E) from Research Grants Council of Hong Kong, Area Strategic Development Programmer in Structural Control and Intelligent Buildings from The Hong Kong Polytechnic Universityand the Opening Research Foundation of the Beijing Key Laboratories (EESR2004-2) from Beijing University of Technology.
文摘A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizontal and vertical ground motions. The hybrid control platform, on which microelectronics equipment is installed, is mounted on a building floor through a series of passive mounts and controlled by hydraulic actuators in both horizontal and vertical directions. The control platform is an elastic body with significant bending modes of vibration, and a sub-optimal control algorithm is used to manipulate the hydraulic actuators with actuator dynamics included. The finite element model and the equations of motion of the coupled platform-building system are then established in the absolute coordinate to facilitate the feedback control and performance evaluation of the platform. The horizontal and vertical ground vibrations at the base of the building induced by nearby moving road vehicles are assumed to be stationary random processes. A typical three-story microelectronics building is selected as a case study. The case study shows that the vertical vibration of the microelectronics building is higher than the horizontal. The use of a hybrid control platform can effectively reduce both horizontal and vertical microvibrations of the microelectronics equipment to the level which satisfies the stringent microscale velocity requirement specified in the Bolt Beranek & Newman (BBN) criteria.
基金Romanian Ministry of National Education(MEN)under the Grant Number 72/2012
文摘This paper evaluates possible directional effects from strong ground motions recorded during the last four significant subcrustal earthquakes produced in the Vrancea seismic zone(Romania) in August 1986(Mw=7.1),May 1990(Mw=6.9 and 6.4) and October 2004(Mw=6.0).Several measures of the horizontal component of the ground motion given in the literature(Boore et al.,2006;Boore,2010) are computed and are related to the geometric mean of the as-recorded horizontal components.ANOVA method is applied in order to quantify the influence of the earthquake magnitude and of the soil class on some strong ground motion parameters(e.g.Arias intensity,PGV/PGA,or mean period TM).The study of the directional effects is performed using the distribution of IJMAand of the rotation angle corresponding to a measure of the horizontal component of the ground motion(RotD 100) and the results reveal a visible directional pattern for IJMA,while in the case of RotD100 the directional patterns are less visible.