Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d...Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.展开更多
A rapid and accurate method for two-point ray tracing in horizontally layered velocity model is presented in this paper. Numerical experiments show that this method provides stable and rapid convergence with high accu...A rapid and accurate method for two-point ray tracing in horizontally layered velocity model is presented in this paper. Numerical experiments show that this method provides stable and rapid convergence with high accuracies, regardless of various 1-D velocity structures, takeoff angles and epicentral distances. This two-point ray tracing method is compared with the pseudobending technique and the method advanced by Kim and Baag (2002). It turns out that the method in this paper is much more efficient and accurate than the pseudobending technique, but is only applicable to 1-D velocity model. Kim's method is equivalent to ours for cases without large takeoff angles, but it fails to work when the takeoff angle is close to 90°. On the other hand, the method presented in this paper is applicable to cases with any takeoff angles with rapid and accurate convergence. Therefore, this method is a good choice for two-point ray tracing problems in horizontally layered velocity model and is efficient enough to be applied to a wide range of seismic problems.展开更多
The paper first studies the analytical expression of electrical potential by a point current source in a uniform half-space medium,and then focuses on the distribution of electrical potential in a horizontally layered...The paper first studies the analytical expression of electrical potential by a point current source in a uniform half-space medium,and then focuses on the distribution of electrical potential in a horizontally layered half-space model by a point current source within the surface layer or the bottom layer.Finally,the electrical potential by a source electrode in any layer of a layered half-space model is presented.展开更多
On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoela...On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.展开更多
In times of active research of the possibilities of colonization of other planets,it is important to acquire the skills of forecasting weather conditions on the planets,which are the prospects for human settlement.In ...In times of active research of the possibilities of colonization of other planets,it is important to acquire the skills of forecasting weather conditions on the planets,which are the prospects for human settlement.In this research,the theoretical model is developed that describes the physical processes that occur in the atmosphere of Mars in order to calculate the surface temperature of the planet for any point of the planet’s area,time of day,and day of the year.The following theoretical model is implemented in computer software realized by Python programming language to calculate the necessary data.展开更多
基金supported by Central Guiding Local Science and Technology Development Special Fund Project(No.ZYYD2023B02)the National Natural Science Foundation of China(Nos.52078432 and 52168066)the Scientific Research Project of China Railway First Survey and Design Institute Group Co.(No.20-06).
文摘Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.
基金National Natural Science Foundation of China (40074008 and 40134010).
文摘A rapid and accurate method for two-point ray tracing in horizontally layered velocity model is presented in this paper. Numerical experiments show that this method provides stable and rapid convergence with high accuracies, regardless of various 1-D velocity structures, takeoff angles and epicentral distances. This two-point ray tracing method is compared with the pseudobending technique and the method advanced by Kim and Baag (2002). It turns out that the method in this paper is much more efficient and accurate than the pseudobending technique, but is only applicable to 1-D velocity model. Kim's method is equivalent to ours for cases without large takeoff angles, but it fails to work when the takeoff angle is close to 90°. On the other hand, the method presented in this paper is applicable to cases with any takeoff angles with rapid and accurate convergence. Therefore, this method is a good choice for two-point ray tracing problems in horizontally layered velocity model and is efficient enough to be applied to a wide range of seismic problems.
基金funded under the key project,Study on Techniques of Medium and Short-term Earthquake Prediction for Tianjin and Its Nearby Areas(07ZCGYSF03100),of the Science & Technology Pillar Program of Tianjin Municipality
文摘The paper first studies the analytical expression of electrical potential by a point current source in a uniform half-space medium,and then focuses on the distribution of electrical potential in a horizontally layered half-space model by a point current source within the surface layer or the bottom layer.Finally,the electrical potential by a source electrode in any layer of a layered half-space model is presented.
基金sponsored by the Scientific Research Fund of the Department of Earthquake Monitoring and Prediction,CEA
文摘On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.
文摘In times of active research of the possibilities of colonization of other planets,it is important to acquire the skills of forecasting weather conditions on the planets,which are the prospects for human settlement.In this research,the theoretical model is developed that describes the physical processes that occur in the atmosphere of Mars in order to calculate the surface temperature of the planet for any point of the planet’s area,time of day,and day of the year.The following theoretical model is implemented in computer software realized by Python programming language to calculate the necessary data.