The deformation of slab with dog-bone shape during the horizontal rolling process was simulated using FEM, and the influences of apical dislocation of dog-bone on the slab spread as well as the minimum crop end loss a...The deformation of slab with dog-bone shape during the horizontal rolling process was simulated using FEM, and the influences of apical dislocation of dog-bone on the slab spread as well as the minimum crop end loss and the lost width at slab head and tail were analyzed. The results show that with the increase in the apical dislocation of dog-bone (LA), the slab spread and the minimum crop end loss at slab head and tail decrease, while the lost width at slab head and tail increases. Meanwhile, the relationships of S/LA-LA, LH/LA-LA, WH/LA-LA, L T/LA- LA, and W T/LA-LA were obtained.展开更多
According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has som...According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured.展开更多
基金Item Sponsored by State Basic Research Key Projects (973) of China(2006CB605208-1)National Natural Science Foundation of China(50534020)
文摘The deformation of slab with dog-bone shape during the horizontal rolling process was simulated using FEM, and the influences of apical dislocation of dog-bone on the slab spread as well as the minimum crop end loss and the lost width at slab head and tail were analyzed. The results show that with the increase in the apical dislocation of dog-bone (LA), the slab spread and the minimum crop end loss at slab head and tail decrease, while the lost width at slab head and tail increases. Meanwhile, the relationships of S/LA-LA, LH/LA-LA, WH/LA-LA, L T/LA- LA, and W T/LA-LA were obtained.
基金funded by the Science and Technology Research Project of Education Department of Liaoning(L2015387)Natural Science Foundation of Liaoning(201602542)the National Natural Science Foundation of China(51407119)
文摘According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured.