期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory 被引量:1
1
作者 Fu-Bin Chen Zhao-Yun Zong Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期815-826,共12页
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (... Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data. 展开更多
关键词 Monitoring change in horizontal stress Multi-wave reflection coefficients Nonlinear elasticity theory Time-lapse seismic data
下载PDF
An improved gravity method to horizontal tectonic stresses and its applications in Tibet 被引量:1
2
作者 Chuang Xu Hangtao Yu +2 位作者 Chaolong Yao Jinbo Li Jianguo Yan 《Geodesy and Geodynamics》 2020年第6期468-473,共6页
It is significant for identifying mass movement patterns to invert horizontal tectonic stresses at different depths underneath Tibet.In recent years,a large number of achievements focusing on two-dimensional tectonic ... It is significant for identifying mass movement patterns to invert horizontal tectonic stresses at different depths underneath Tibet.In recent years,a large number of achievements focusing on two-dimensional tectonic stresses have been obtained from gravity data.However,three-dimensional tectonic stresses in Tibet are still unknown or debatable.Therefore,in the present study an improved method to multilayer horizontal tectonic stresses using gravity observations is developed.The inverted multilayer horizontal tectonic stresses are in agreement with those from previous studies.In addition,rich tectonic structure and development can be revealed from the inverted multilayer horizontal tectonic stresses:(1)the distribution of horizontal tectonic stresses at various depths shows strong correlation with that of the tectonic elements,where major faults and earthquake epicenters are corresponding with stress highs and the stable basins are consistent with stress lows.(2)the mass movement patterns of whole Tibet present clockwise,and the material movement directions in the west and east are approximately southnorth and east-west,respectively.(3)in eastern Tibet,the eastward materials caused by the south-north extrusion between Indian and Eurasian plates are divided into two parts by the stable Sichuan Block,one flowing nearly southeast and the other moving almost northeast.The inverted multilayer horizontal tectonic stresses may provide direct evidences for mass movement patterns in Tibet. 展开更多
关键词 GRAVITY horizontal tectonic stresses TIBET MULTILAYER
下载PDF
Characteristics of orthorhombic anisotropic seismic response induced by horizontal in situ stress in vertical transversely isotropic media
3
作者 Xinpeng PAN Chengxu LU +1 位作者 Zhizhe ZHAO Jianxin LIU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2291-2310,共20页
Sedimentary strata typically exhibit the characteristics of transverse isotropy(VTI)with a vertical axis of symmetry.However,fractures in sedimentary strata tend to produce anisotropic closure due to horizontal in sit... Sedimentary strata typically exhibit the characteristics of transverse isotropy(VTI)with a vertical axis of symmetry.However,fractures in sedimentary strata tend to produce anisotropic closure due to horizontal in situ stress,resulting in pronounced orthorhombic anisotropy in VTI media under such stress conditions and influencing the propagation behavior of seismic waves.Previous studies have primarily focused on the elastic wave velocity anisotropy induced by applied stress in isotropic background media,neglecting the impact of VTI background media on the anisotropy induced by horizontal in situ stress and the response characteristics of seismic wave propagation.To address these gaps,we first establish the effective elastic stiffness tensor of VTI media under horizontal in situ stress using nonlinear acoustoelastic theory.Then,we derive the accurate and linearized approximate equations for P-wave seismic reflectivity of VTI media under horizontal in situ stress,based on wave equations and scattering theory,respectively.Finally,we compare and analyze the characteristics of orthorhombic anisotropic seismic response induced by horizontal in situ stress at various types of elastic reflection interfaces.Our results demonstrate that the linearized approximation of the seismic reflection response characteristics closely aligns with the accurate equations under conditions of small stress below 10 MPa,effectively capturing the azimuth-dependent orthorhombic anisotropy induced by horizontal in situ stress in VTI media.The results of this study also provide a novel theoretical approach and valuable insights into the seismic prediction of in situ stress. 展开更多
关键词 horizontal in situ stress Nonlinear acoustoelastic theory Linear slip theory Orthorhombic anisotropy stress seismic prediction
原文传递
Evolution of stress fields during the supercontinent cycle
4
作者 Alexander Bobrov Alexey Baranov Robert Tenzer 《Geodesy and Geodynamics》 CSCD 2022年第4期363-375,共13页
We investigate the evolution of stress fields during the supercontinent cycle using the 2D Cartesian geometry model of thermochemical convection with the non-Newtonian rheology in the presence of floating deformable c... We investigate the evolution of stress fields during the supercontinent cycle using the 2D Cartesian geometry model of thermochemical convection with the non-Newtonian rheology in the presence of floating deformable continents.In the course of the simulation,the supercontinent cycle is implemented several times.The number of continents considered in our model as a function of time oscillates around 3.The lifetime of a supercontinent depends on its dimension.Our results suggest that immediately before a supercontinent breakup,the over-lithostatic horizontal stresses in it(referring to the mean value by the computational area)are tensile and can reach-250 MPa.At the same time,a vast area beneath a supercontinent with an upward flow exhibits clearly the over-lithostatic compressive horizontal stresses of 50-100 МРа.The reason for the difference in stresses in the supercontinent and the underlying mantle is a sharp difference in their viscosity.In large parts of the mantle,the over-lithostatic horizontal stresses are in the range of±25 MPa,while the horizontal stresses along subduction zones and continental margins are significantly larger.During the process of continent-to-continent collisions,the compressive stresses can approximately reach 130 MPa,while within the subcontinental mantle,the tensile over-lithostatic stresses are about-50 MPa.The dynamic topography reflects the main features of the su-percontinent cycle and correlates with real ones.Before the breakup and immediately after the disin-tegration of the supercontinent,continents experience maximum uplift.During the supercontinent cycle,topographic heights of continents typically vary within the interval of about±1.5 km,relatively to a mean value.Topographic maxima of orogenic formations to about 2-4 km are detected along continent-to-continent collisions as well as when adjacent subduction zones interact with continental margins. 展开更多
关键词 Supercontinent cycle Floating deformable continents Thermochemical convection horizontal stresses Dynamic topography
下载PDF
Stress states of thawed soil subgrade
5
作者 Andrei Petriaev 《Research in Cold and Arid Regions》 CSCD 2015年第4期348-353,共6页
The article presents the field measurement results of the stress states of roadbed thawed soil subgrade during the passage of trains. The dependences of the vertical and horizontal stresses on the velocity of the roll... The article presents the field measurement results of the stress states of roadbed thawed soil subgrade during the passage of trains. The dependences of the vertical and horizontal stresses on the velocity of the rolling stock motion, the axle load, and the distance from the sleeper sole have been obtained. 展开更多
关键词 dynamic vibration impact vertical and horizontal stresses thawing subgrade stress rise rate
下载PDF
Estimation of the horizontal in-situ stress magnitude and azimuth using previous drilling data
6
作者 Masoud Ziaie Mohammad Fazaelizadeh +1 位作者 Abbas Ayatizadeh Tanha Ali Sharifzadegan 《Petroleum》 EI CSCD 2023年第3期352-363,共12页
Oil exploration and production,well stability,sand production,geothermal drilling,waste-water or CO_(2) sequestration,geohazards assessment,and EOR processes such as hydraulic fracturing,require adequate information a... Oil exploration and production,well stability,sand production,geothermal drilling,waste-water or CO_(2) sequestration,geohazards assessment,and EOR processes such as hydraulic fracturing,require adequate information about in-situ stresses.There are several methods for analyzing the magnitude and direction of in-situ stresses.The evaluation of tensile fractures and shear fractures in vertical oil and gas wellbores using image logs is one of these methods.Furthermore,when image logs are run in boreholes,they can be extremely costly and possibly stop the drilling.The data for this study were gathered from seven directional wells drilled into a strike-slip fault reservoir in southern Iran.Vertical stress,minimum horizontal stress,pore pressure,Poisson's ratio of formations,and 233 mud loss reporting points make up the entire data.This is the first time maximum horizontal stress direction has been calculated without referring to image log data.In addition,the points of lost circulation were categorized into natural and induced fracture.The results revealed that,the maximum horizontal stress direction of the reservoir was calculated at 65northeast-southwest.The error rate is roughly 10when comparing the results of this investigation to those obtained from the image log.The maximum horizontal stress direction is calculated precisely.In terms of tensile fracture pressure,the in-situ stress ratio identifies the safest as well as the most critical inclination and azimuth for each well. 展开更多
关键词 Well instability Lost circulation Drilling induced tensile fracture Image log In-situ stress horizontal stress direction
原文传递
Analytical investigations of in situ stress inversion from borehole breakout geometries
7
作者 Zizhuo Xiang Taehyun Moon +2 位作者 Joung Oh Guangyao Si Ismet Canbulat 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第7期2375-2387,共13页
This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collec... This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collected and three failure criteria were studied.Based on the Kirsch equations,relatively accurate major horizontal stress(sH)estimations from known minor horizontal stress(sh)were achieved with percentage errors ranging from 0.33%to 44.08%using the breakout width.The Mogi-Coulomb failure criterion(average error:13.1%)outperformed modified Wiebols-Cook(average error:19.09%)and modified Lade(average error:18.09%)failure criteria.However,none of the tested constitutive models could yield reasonable sh predictions from known sH using the same approach due to the analytical expression of the redistributed stress and the nature of the constitutive models.In consideration of this issue,the horizontal stress ratio(sH/sh)is suggested as an alternative input,which could estimate both sH and sh with the same level of accuracy.Moreover,the estimation accuracies for both large-scale and laboratory-scale breakouts are comparable,suggesting the applicability of this approach across different breakout sizes.For breakout depth,conformal mapping and complex variable method were used to calculate the stress concentration around the breakout tip,allowing the expression of redistributed stresses using binomials composed of sH and sh.Nevertheless,analysis of the breakout depth stabilisation mechanism indicates that additional parameters are required to utilise normalised breakout depth for stress estimation compared to breakout width.These parameters are challenging to obtain,especially under field conditions,meaning utilising normalised breakout depth analytically in practical applications faces significant challenges and remains infeasible at this stage.Nonetheless,the normalised breakout depth should still be considered a critical input for any empirical and statistical stress estimation method given its significant correlation with horizontal stresses.The outcome of this paper is expected to contribute valuable insights into the breakout stabilisation mechanisms and estimation of in situ stress magnitudes based on borehole breakout geometries. 展开更多
关键词 Borehole failure In situ stress estimation In situ horizontal stress ratio Conformal mapping Complex variable method Breakout stabilisation
下载PDF
Numerical simulation of hydraulic fracture propagation in tight oil reservoirs by volumetric fracturing 被引量:5
8
作者 Shi-Cheng Zhang Xin Lei +1 位作者 Yu-Shi Zhou Guo-Qing Xu 《Petroleum Science》 SCIE CAS CSCD 2015年第4期674-682,共9页
Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system whi... Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference. 展开更多
关键词 Tight oil reservoir Volumetric fracturingFracture propagation horizontal stress difference Stimulated reservoir volume
下载PDF
LiDAR mapping of ground damage in a heading re-orientation case study 被引量:2
9
作者 Nicole Evanek Brent Slaker +1 位作者 Anthony Iannacchione Tim Miller 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期67-74,共8页
The Subtropolis Mine is a room-and-pillar mine extracting the Vanport limestone near Petersburg,Ohio,U.S.In February of 2018,mine management began implementing a heading re-orientation to better control the negative e... The Subtropolis Mine is a room-and-pillar mine extracting the Vanport limestone near Petersburg,Ohio,U.S.In February of 2018,mine management began implementing a heading re-orientation to better control the negative effects of excessive levels of horizontal stress.The conditions in the headings improved,but as expected,stress-related damage concentrated within crosscuts.The mine operator has worked to lessen the impact of the instabilities in the outby crosscuts by implementing several engineering controls.With the implementation of each control,conditions were monitored and analyzed using observational and measurement techniques including 3D LiDAR surveys.Since the heading re-orientation,several 3D LiDAR surveys have been conducted and analyzed by researchers from the National Institute for Occupational Safety and Health(NIOSH).This study examines(1)the characteristics of each 3D LiDAR survey,(2)the change in the detailed strata conditions in response to stress concentrations,and(3)the change detection techniques between 3D LiDAR surveys to assess entry stability.Ultimately,the 3D LiDAR surveys proved to be a useful tool for characterizing ground instability and assessing the effectiveness of the engineering controls used in the heading re-orientation at the Subtropolis Mine. 展开更多
关键词 Ground control LIMESTONE horizontal stress stress control layout Crosscut Windows
下载PDF
Modeling the Contemporary Stress Field and Deformation Pattern of Eastern Mediterranean 被引量:5
10
作者 S K Dwivedi D Hayashi 《Journal of Earth Science》 SCIE CAS CSCD 2010年第4期365-381,共17页
The contemporary stress field in the earth's crust is important and provides insights into mechanisms that drive plate motions. In this study, elastic plane stress finite element modeling incorporating realistic rock... The contemporary stress field in the earth's crust is important and provides insights into mechanisms that drive plate motions. In this study, elastic plane stress finite element modeling incorporating realistic rock parameters was used to calculate the stress field, displacement field, and defor- mation of the plate interactions in the eastern Mediterranean. Modeled stress data for the African- Arabian-Anatolian plate interactions with fixed European platform correlate well with observed contemporary stress indicator from the world stress map (WSM) and focal mechanism of earthquakes; while displacement field agrees qualitatively well with GPS vectors and sense of motion indicated by focal mechanisms for large crustal earthquakes (Ms〉6) and plate motion models. Modeling result shows the direction of maximum horizontal compressive stress (σHmax) toward the direction of absolute motion of these plates. Large perturbations in σHmax orientations are shown to occur in and around tectonic boundaries between those plates. It is observed that, although the African plate acts mostly as indenter, which transmits the collisional motion from the Arabian plate to the Anatolian plate, in the current situation, the far-field stress, probably from the subduction in Aegean Arc, is needed to satisfy the contemporary stress field in Anatolia. 展开更多
关键词 finite element model maximum horizontal stress seismieity crustal deformation ANATOLIA eastern Mediterranean.
原文传递
Statistical distribution of geomechanical properties and‘Sweet Spots’identification in part of the upper Bakken
11
作者 Nelson R.K.Tatsipie James J.Sheng 《Petroleum Research》 EI 2023年第3期301-308,共8页
Completions and Reservoir Quality are two key attributes that are used to characterize nonconventional hydrocarbon assets.This is because,for optimum exploitation of these unconventional assets,horizontal wells need t... Completions and Reservoir Quality are two key attributes that are used to characterize nonconventional hydrocarbon assets.This is because,for optimum exploitation of these unconventional assets,horizontal wells need to be drilled in“Sweet Spots”(i.e.,regions where Completions and Reservoir Quality are both superior).One way to quantify these qualities is to use reservoir and geomechanical properties.These properties can be estimated on a location basis from well logs,and then mapped over terrain using geostatistical modeling.This study presents a‘Sweet Spots’identification workflow based on three performance indexes(Storage Potential Index,Brittleness Index,and Horizontal Stress Index)that can be used to quantify CQ and RQ.The performance indexes are computed from petrophysical property volumes(of Young's Modulus,Bulk Modulus,Shear Modulus,Poisson's Ratio,Minimum Horizontal Stress,Volume of Shale,Total Organic Carbon,Thickness,and Porosity)which are in turn computed from well logs and geostatistical simulation.In the end,the study offers a method to compare the predicted“Sweet Spots”against available production data via their correlation coefficient.The resulting reasonable formation property maps,the successful identification of‘Sweet Spots’,and a correlation coefficient of 0.88(between the predicted“Sweet Spots”and well production data)point to the potential of the proposed effort. 展开更多
关键词 Sweet spots Sequential Gaussian simulation Storage potential index Brittleness index horizontal stress index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部