期刊文献+
共找到571,376篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake 被引量:1
1
作者 WANG Tong LIU Xianfeng +5 位作者 HOU Zhaoxu XU Jiahang ZHANG Jun YUAN Shengyang JIANG Guanlu HU Jinshan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期882-900,共19页
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d... Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes. 展开更多
关键词 Seismic behavior horizontal layered Weathered rock slope Shaking table test Failure mode
下载PDF
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts
2
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
下载PDF
Correlation between the rock mass properties and maximum horizontal stress:A case study of overcoring stress measurements
3
作者 Peng Li Meifeng Cai +2 位作者 Shengjun Miao Yuan Li Yu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期39-48,共10页
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre... Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data. 展开更多
关键词 overcoring stress measurements elastic modulus Poisson's ratio rock quality designation maximum horizontal stress fuzzy identification
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
4
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
5
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers Molecular structure Design strategies
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
6
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
7
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
下载PDF
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
8
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
下载PDF
Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption
9
作者 Zhaobo Feng Chongbo Liu +7 位作者 Xin Li Guangsheng Luo Naixin Zhai Ruizhe Hu Jing Lin Jinbin Peng Yuhui Peng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期439-455,共17页
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw... Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications. 展开更多
关键词 Metal-nonmetal co-doping 3d-2p orbital coupling Spin polarization Helical structure Broadband EM wave absorption
下载PDF
Microstructure and properties of Al-0.70Fe-0.24Cu alloy conductor prepared by horizontal continuous casting and subsequent continuous extrusion forming 被引量:6
10
作者 张晓苑 张辉 +1 位作者 孔祥鑫 傅定发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1763-1769,共7页
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri... A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases. 展开更多
关键词 A1-0.70Fe-0.24Cu alloy horizontal continuous casting continuous extrusion forming MICROstructure PROPERTY
下载PDF
INFLUENCE OF MODEL HORIZONTAL RESOLUTION ON THE INTENSITY AND STRUCTURE OF RAMMASUN 被引量:5
11
作者 WANG Chen-xi ZENG Zhi-hua 《Journal of Tropical Meteorology》 SCIE 2018年第1期15-28,共14页
We use the WRF(V3.4) model as the experimental model and select three horizontal resolutions of 15, 9,and 3 km to research the influence of the model's horizontal resolution on the intensity and structure of the s... We use the WRF(V3.4) model as the experimental model and select three horizontal resolutions of 15, 9,and 3 km to research the influence of the model's horizontal resolution on the intensity and structure of the super-strong typhoon Rammasun(1409) in 2014. The results indicate that the horizontal resolution has a very large impact on the intensity and structure of Rammasun. The Rammasun intensity increases as the horizontal resolution increases. When the horizontal resolution increases from 9 km to 3 km, the enhancement of intensity is more obvious, but the strongest intensity simulated by 3 km horizontal resolution is still weaker than the observed strongest intensity. Along with the increase of horizontal resolution, the horizontal scale of the Rammasun vortex decreases, and the vortex gradually contracts toward its center. The vortex structure changes from loose to compact and deep. The maximum wind radius,thickness of the eye wall, and outward inclination of the eye wall with height decrease, and the wind in the inner core region, updraft motion along the eye wall, and strength of the warm core become stronger. Additionally, the pressure gradient and temperature gradient of the eye wall region increase, and the vortex intensity becomes stronger. When the horizontal resolution increases from 9 km to 3 km, the change in the Rammasun structure is much larger than the change when the horizontal resolution increases from 15 km to 9 km. When the model does not employ the method of convection parameterization, the Rammasun intensity simulated with 3 km horizontal resolution is slightly weaker than the intensity simulated with 3 km horizontal resolution when the Kain-Fritsch(KF) convection parameterization scheme is adopted, while the intensity simulated with 9 km horizontal resolution is much weaker than the intensity simulated with 9 km horizontal resolution when the KF scheme is adopted. The influence of the horizontal resolution on the intensity and structure of Rammasun is larger than the influence when the KF scheme is adopted. 展开更多
关键词 horizontal resolution Rammasun INTENSITY structure
下载PDF
Effect of low-frequency electromagnetic field on the as-cast microstructure of a new super high strength aluminum alloy by horizontal continuous casting 被引量:8
12
作者 Yubo ZUO Jianzhong CUI +3 位作者 Yang WANG Xiaotao LIU Zhihao ZHAO Haitao Zhang 《China Foundry》 SCIE CAS 2005年第1期48-51,共4页
The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-c... The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform. 展开更多
关键词 LOW-FREQUENCY ELECTROMAGNETIC field horizontal continuous CASTING microstructure AL-ZN-MG-CU alloy
下载PDF
Numerical simulation and dimension reduction analysis of electromagnetic logging while drilling of horizontal wells in complex structures 被引量:7
13
作者 Zhen-Guan Wu Shao-Gui Deng +5 位作者 Xu-Quan He Runren Zhang Yi-Ren Fan Xi-Yong Yuan Yi-Zhi Wu Qing Huo Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期645-657,共13页
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele... Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy. 展开更多
关键词 Complex formation structures horizontal wells Electromagnetic logging while drilling 2.5D algorithm-Model simplification
下载PDF
Influence of pouring methods on filling process,microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting 被引量:2
14
作者 Xue-feng Zhu Bao-yi Yu +4 位作者 Li Zheng Bo-ning Yu Qiang Li Shu-ning Lü Hao Zhang 《China Foundry》 SCIE 2018年第3期196-202,共7页
Pouring position as the input heat source has great infl uence on the temperature fi eld evolution. In this study, the Flow3 D simulation software was applied to investigate the infl uence of pouring methods(with fi x... Pouring position as the input heat source has great infl uence on the temperature fi eld evolution. In this study, the Flow3 D simulation software was applied to investigate the infl uence of pouring methods(with fi xed or moving pouring channel) on AZ91 Mg alloy horizontal centrifugal casting(HCC) process. The simulation results show that the moving pouring channel method can effectively increase the cooling rate and formability of casting pipe. The casting experiment shows that an AZ91 Mg alloy casting pipe with homogeneous microstructure and clear contour was obtained by the moving pouring channel method, and the grain size of the casting pipe is signifi cantly decreased. Meanwhile, serious macro-segregation appeared in the AZ91 casting pipe by the fi xed pouring channel HCC process. Compared with the fi xed pouring channel, the moving pouring channel can remarkably improve the ultimate tensile strength and elongation of the AZ91 HCC pipe from 142.2 MPa to 201.5 MPa and 6.2% to 6.7%, respectively. 展开更多
关键词 horizontal CENTRIFUGAL casting (HCC) numerical simulation POURING method AZ91Mg alloy
下载PDF
Hydroelastic Analysis of a Very Large Floating Structure Edged with a Pair of Submerged Horizontal Plates 被引量:2
15
作者 MA Zhe CHENG Yong +1 位作者 ZHAI Gangjun OU Jinping 《Journal of Ocean University of China》 SCIE CAS 2015年第2期228-236,共9页
This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated pla... This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper. 展开更多
关键词 VLFS anti-motion device hydroelastic problems perforate horizontal plate submerged horizontal plate
下载PDF
Microstructure and properties of ductile iron bars for plunger pump prepared by horizontal continuous casting process 被引量:1
16
作者 Chun-jie Xu Zhen Zhao +4 位作者 Yu Lei Yong-hui Liu Zhong-ming Zhang Yan Li Dan Shechtman 《China Foundry》 SCIE 2019年第2期118-125,共8页
Ductile iron bars(DIBs) with a diameter of 145 mm, used for plunger pump production, were made by the horizontal continuous casting(HCC). The microstructure of the samples cut at three locations with different distanc... Ductile iron bars(DIBs) with a diameter of 145 mm, used for plunger pump production, were made by the horizontal continuous casting(HCC). The microstructure of the samples cut at three locations with different distances away from the surface(~20 mm from the surface, half of the radius and the center of the HCCDIBs)were investigated. The mechanical properties were measured by tensile and torsion tests. Results show that after the spheroidization of graphite, the iron matrix incorporates the nodules of Format I, Size 8 close to the surface, Format I, Size 7 at the half of the radius from the surface, and Format II, Size 6 in the centre of the bar,according to the ASTM A247 standard. The content of pearlite in the matrix changes from 55%(~20 mm from the surface) to 70%(half of the radius) and 80%(the center of the HCCDIBs). The strengths in tension are 552, 607 and 486 MPa with the elongations of 12.5%, 10.5% and 5.8% in samples cut at these three locations from the surface to the centre, respectively. The strength in torsion is equal to 558, 551 and 471 MPa at corresponding torsion angles of 418°, 384° and 144° respectively to the same distance from the bar surface. Fracture in tension is manifested via crack propagation through the interface between graphite nodules and matrix(Mode I), while in torsion the fracture is caused by the shear of graphite nodules(Mode II). It is shown that the transition between two fracture modes is also dependent on the size of graphite nodule. Typically, fracture Mode I was observed for nodules of smaller diameter(less than 22.7 μm) and fracture Mode II was seen for nodules of greater diameter(more than 24.8 μm). 展开更多
关键词 horizontal continuous casting DUCTILE iron BARS PLUNGER pump tension and TORSION properties microstructure
下载PDF
Microstructure evolution and mechanical properties of Cu-0.36Be-0.46Co alloy fabricated by heating-cooling combined mold horizontal continuous casting during cold rolling 被引量:3
17
作者 Yan-bin JIANG Tong-tong ZHANG +6 位作者 Yu LEI Xin-hua LIU Yang CAO Jian-xin XIE Bing ZHAO Yong-hua LI Chuan-rong JIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期958-971,共14页
Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical... Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical properties of the alloy as well as its deformation mechanism were investigated. The results showed that the as-cast alloy plate had columnar grains along the length direction, good surface quality and elongation of 35%, which was directly large-reduction cold rolled without surface treatment, and the accumulative cold rolling reduction reached 98%. When the reduction was small(20%), numerous dislocations and dislocation cells formed, and the deformation mechanism was dislocation slip. When the reduction was 40%, deformation twins appeared, and interactions between twins and dislocation cells induced strip-like dislocation cells. When the reduction exceeded 60%, shear bands formed and apparent crystal rotation in the micro-region happened. Further increasing the reduction, the amount of the shear bands rose and they interacted with each other, which refined the grains apparently. The tensile strength and hardness increased from 353 MPa and HV 119 of the as-cast alloy to 625 MPa and HV 208 with 95% reduction, respectively, and the elongation reduced from 35% to 7.6%. A process of HCCM horizontal continuous casting-cold rolling can work as a novel compact method to fabricate Cu-Be alloy sheet. 展开更多
关键词 HCCM horizontal continuous casting copper-beryllium alloy ROLLING microstructure mechanical properties
下载PDF
PROPAGATION BEHAVIORS OF SHEAR HORIZONTAL WAVES IN PIEZOELECTRIC-PIEZOMAGNETIC PERIODICALLY LAYERED STRUCTURES 被引量:5
18
作者 Jinxi Liu Weiyi Wei Daining Fang 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第1期77-84,共8页
This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The exp... This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The explicit dispersion relations are derived for the two cases when the propagation directions of SH waves are normal to the interface and parallel to the interface, respectively. The asymptotic expressions for dispersion relations are also given when the wave number is extremely small. Numerical results for stop band effect and phase velocity are presented for a periodic system of alternating BaTiO3 and Terfenol-D layers. The influence of volume fraction on stop band effect and dispersion behaviors is discussed and revealed. 展开更多
关键词 piezoelectric material piezomagnetic material periodically layered structure SH waves stop band effect dispersion relation
下载PDF
Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars 被引量:7
19
作者 Chun-jie Xu Pan Dai +3 位作者 Zheng-yang Zhang Zhong-ming Zhang Jin-cheng Wang Yong-hui Liu 《China Foundry》 SCIE CAS 2015年第2期104-110,共7页
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ... In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 &#176;C and 135 min, and austempering temperature and time are 279 &#176;C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively. 展开更多
关键词 horizontal continuous casting (HCC) ductile iron dense bars austempered ductile iron (ADI) microstructure and mechanical properties orthogonal test
下载PDF
Dramatic changes in the horizontal structure of mangrove forests in the largest delta of the northern Beibu Gulf, China
20
作者 Riming Wang Zhijun Dai +4 位作者 Hu Huang Xixing Liang Xiaoyan Zhou Zhenming Ge Baoqing Hu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第7期116-123,共8页
The horizontal structure of mangrove forests is an important characteristic that reflects a significant signal for coupling between mangroves and external drivers.While the loss and gain of mangroves has received much... The horizontal structure of mangrove forests is an important characteristic that reflects a significant signal for coupling between mangroves and external drivers.While the loss and gain of mangroves has received much attention,little information about how the horizontal structure of mangrove forests develops from the seedling stage to maturity has been presented.Here,remote sensing images taken over approximately 15 years,UVA images,nutrient elements,sediments,and Aegiceras corniculatum vegetation parameters of the ecological quadrats along the Nanliu Delta,the largest delta of the northern Beibu Gulf in China,are analyzed to reveal changes in the horizontal structure of mangroves and their associated driving factors.The results show that both discrete structures and agglomerated structures can often be found in A.corniculatum seedlings and saplings.However,the combination of seedlings growing into maturity and new seedlings filling in available gaps causes the discrete structure of A.corniculatum to gradually vanish and the agglomerate structure to become stable.The aggregated structure of seedlings,compared to the discrete structure,can enhance the elevation beneath mangroves by trapping significantly more sediments,providing available spaces and conditions for seedlings to continue growing.Furthermore,by catching fine sediments with enriched nutrients,the survival rate of A.corniculatum seedlings in the agglomerated structure can be much higher than that in the discrete structure.Our results highlight the significance of the agglomeration of A.corniculatum,which can be beneficial to coastal mangrove restoration and management. 展开更多
关键词 deltaic mangrove Aegiceras corniculatum horizontal structure biomorphodynamic processes Nanliu Delta
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部