To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected...To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected to liquid nitrogen(LN2) cooling and conducted rock-breaking experiments using LN2 jet. Rock-breaking characteristics and mechanisms of LN2 jet, heat transfer features between LN2 and rock and thermal stress evolution in rock were analyzed. A novel high-pressure LN2 jet assisted drilling method was proposed accordingly. The study results show that LN2 thermal shock can significantly reduce uniaxial compression strength and elastic modulus of rock. Rock damage and corresponding mechanical deterioration become more pronounced with increasing rock temperature. The LN2 jet has merits of high rock-breaking efficiency and low threshold rock-breaking pressure. Rock failure under LN2 jet impact is characterized by large volume breakage and the rock-breaking performance becomes more significant with increase of rock temperature. Under the impact of LN2 jet, the damage of granite is the most remarkable among the three rock samples. Thus, this method works better for high temperature granite formations. It has a good application prospect in speeding up drilling rate in deep hot dry rock geothermal reservoirs.展开更多
Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while ...Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness.展开更多
Theories established from engineering fundamentals have been of great value in supporting the design and execution of drilling operations in gas drilling where gas is used as a drilling fluid.This work presents an ove...Theories established from engineering fundamentals have been of great value in supporting the design and execution of drilling operations in gas drilling where gas is used as a drilling fluid.This work presents an overview of new theories developed in recent years for special gas drilling operations including horizontal wells.These new theories are found in the areas of gas-mixture flow hydraulics in deviated and horizontal boreholes,hole cleaning of solids accumulation,hole cleaning of formation water,flow diverging for washout control,bit orifice optimization,and depression of formation water influx.This paper provides drilling engineers with updated mathematical models and methods for optimizing design to improve gas drilling performance.展开更多
A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling param...A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling parameters were discussed. The nitrogen chamber in the sampling cylinder functions as an energy storage air cushion, which can supplement the pressure loss caused by temperature change in the sampling process to some extent. The downhole pressurization is to press the sample into the sample chamber as soon as possible, and further increase the pressure of sample to make up for the pressure that the nitrogen chamber cannot provide. Through the analysis of working mode of the sampling fidelity cylinder, the non-ideal gas state equation was used to deduce and calculate the optimal values of fidelity parameters such as pre-charged nitrogen pressure, downhole pressurization amount and sampling volume according to whether the bubble point pressure of the sampling fluid was known and on-site emergency sampling situation. Besides, the influences of ground temperature on fidelity parameters were analyzed, and corresponding correction methods were put forward. The research shows that the fidelity sampling cylinder while drilling can effectively improve the fidelity of the sample. When the formation fluid sample reaches the surface, it can basically ensure that the sample does not change in physical phase state and keeps the same chemical components in the underground formation.展开更多
基金Supported by National Science Fund for Distinguished Young Scholars(NO.51725404)Program of Introducing Talents of Discipline to Chinese Universities(NO.B17045)National Natural Science Foundation of China(NO.51521063)
文摘To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected to liquid nitrogen(LN2) cooling and conducted rock-breaking experiments using LN2 jet. Rock-breaking characteristics and mechanisms of LN2 jet, heat transfer features between LN2 and rock and thermal stress evolution in rock were analyzed. A novel high-pressure LN2 jet assisted drilling method was proposed accordingly. The study results show that LN2 thermal shock can significantly reduce uniaxial compression strength and elastic modulus of rock. Rock damage and corresponding mechanical deterioration become more pronounced with increasing rock temperature. The LN2 jet has merits of high rock-breaking efficiency and low threshold rock-breaking pressure. Rock failure under LN2 jet impact is characterized by large volume breakage and the rock-breaking performance becomes more significant with increase of rock temperature. Under the impact of LN2 jet, the damage of granite is the most remarkable among the three rock samples. Thus, this method works better for high temperature granite formations. It has a good application prospect in speeding up drilling rate in deep hot dry rock geothermal reservoirs.
基金National Science and Technology Major Special Project,2016ZX05044CBM Development Technology and Pilot Test in East Yunnan and Western Guizhou.
文摘Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness.
基金financially supported by the National Natural Science Foundation of China through Grants No. 51221003, No. 51134004 and No. 51274220
文摘Theories established from engineering fundamentals have been of great value in supporting the design and execution of drilling operations in gas drilling where gas is used as a drilling fluid.This work presents an overview of new theories developed in recent years for special gas drilling operations including horizontal wells.These new theories are found in the areas of gas-mixture flow hydraulics in deviated and horizontal boreholes,hole cleaning of solids accumulation,hole cleaning of formation water,flow diverging for washout control,bit orifice optimization,and depression of formation water influx.This paper provides drilling engineers with updated mathematical models and methods for optimizing design to improve gas drilling performance.
基金Supported by the Sinopec Major Science and Technology Project (JPE19007)。
文摘A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling parameters were discussed. The nitrogen chamber in the sampling cylinder functions as an energy storage air cushion, which can supplement the pressure loss caused by temperature change in the sampling process to some extent. The downhole pressurization is to press the sample into the sample chamber as soon as possible, and further increase the pressure of sample to make up for the pressure that the nitrogen chamber cannot provide. Through the analysis of working mode of the sampling fidelity cylinder, the non-ideal gas state equation was used to deduce and calculate the optimal values of fidelity parameters such as pre-charged nitrogen pressure, downhole pressurization amount and sampling volume according to whether the bubble point pressure of the sampling fluid was known and on-site emergency sampling situation. Besides, the influences of ground temperature on fidelity parameters were analyzed, and corresponding correction methods were put forward. The research shows that the fidelity sampling cylinder while drilling can effectively improve the fidelity of the sample. When the formation fluid sample reaches the surface, it can basically ensure that the sample does not change in physical phase state and keeps the same chemical components in the underground formation.