Ensuring the removal of host cell proteins(HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies(m Abs) remains a challenge.Since residual HCPs might affect product stability or safe...Ensuring the removal of host cell proteins(HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies(m Abs) remains a challenge.Since residual HCPs might affect product stability or safety,constant monitoring is required to demonstrate their removal to be below the regulatory accepted level of 100 ng/mg.The current standard analytical approach for this procedure is based on ELISA;however,this approach only measures the overall HCP content.Therefore,the use of orthogonal methods,such as liquid chromatography-mass spectrometry(LC-MS),has been established,as it facilitates the quantitation of total HCPs as well as the identification and quantitation of the individual HCPs present.In the present study,a workflow for HCP detection and quantitation using an automated magnetic bead-based sample preparation,in combination with a data-independent acquisition(DIA) LC-MS analysis,was established.Employing the same instrumental setup commonly used for peptide mapping analysis of m Abs allows for its quick and easy implementation into pre-existing workflows,avoiding the need for dedicated instrumentation or personnel.Thereby,quantitation of HCPs over a broad dynamic range was enabled to allow monitoring of problematic HCPs or to track changes upon altered bioprocessing conditions.展开更多
Monitoring of host cell proteins(HCPs)during the manufacturing of monoclonal antibodies(mAb)has become a critical requirement to provide effective and safe drug products.Enzyme-linked immunosorbent assays are still th...Monitoring of host cell proteins(HCPs)during the manufacturing of monoclonal antibodies(mAb)has become a critical requirement to provide effective and safe drug products.Enzyme-linked immunosorbent assays are still the gold standard methods for the quantification of protein impurities.However,this technique has several limitations and does,among others,not enable the precise identification of proteins.In this context,mass spectrometry(MS)became an alternative and orthogonal method that delivers qualitative and quantitative information on all identified HCPs.However,in order to be routinely implemented in biopharmaceutical companies,liquid chromatography-MS based methods still need to be standardized to provide highest sensitivity and robust and accurate quantification.Here,we present a promising MS-based analytical workflow coupling the use of an innovative quantification standard,the HCP Profiler solution,with a spectral library-based data-independent acquisition(DIA)method and strict data validation criteria.The performances of the HCP Profiler solution were compared to more conventional standard protein spikes and the DIA approach was benchmarked against a classical datadependent acquisition on a series of samples produced at various stages of the manufacturing process.While we also explored spectral library-free DIA interpretation,the spectral library-based approach still showed highest accuracy and reproducibility(coefficients of variation<10%)with a sensitivity down to the sub-ng/mg mAb level.Thus,this workflow is today mature to be used as a robust and straightforward method to support mAb manufacturing process developments and drug products quality control.展开更多
Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopha...Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs.展开更多
基金funding from Thermo Fisher Scientific as part of a funded collaborative agreement with NIBR。
文摘Ensuring the removal of host cell proteins(HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies(m Abs) remains a challenge.Since residual HCPs might affect product stability or safety,constant monitoring is required to demonstrate their removal to be below the regulatory accepted level of 100 ng/mg.The current standard analytical approach for this procedure is based on ELISA;however,this approach only measures the overall HCP content.Therefore,the use of orthogonal methods,such as liquid chromatography-mass spectrometry(LC-MS),has been established,as it facilitates the quantitation of total HCPs as well as the identification and quantitation of the individual HCPs present.In the present study,a workflow for HCP detection and quantitation using an automated magnetic bead-based sample preparation,in combination with a data-independent acquisition(DIA) LC-MS analysis,was established.Employing the same instrumental setup commonly used for peptide mapping analysis of m Abs allows for its quick and easy implementation into pre-existing workflows,avoiding the need for dedicated instrumentation or personnel.Thereby,quantitation of HCPs over a broad dynamic range was enabled to allow monitoring of problematic HCPs or to track changes upon altered bioprocessing conditions.
基金supported by the“Association Nationale de la Recherche et de la Technologie”and UCB Pharma S.A.(Belgium and France)via the CIFRE fellowship of Steve Hessmannsupported by the“Agence Nationale de la Recherche”via the French Proteomic Infrastructure ProFI FR2048(ANR-10-INBS-08-03).
文摘Monitoring of host cell proteins(HCPs)during the manufacturing of monoclonal antibodies(mAb)has become a critical requirement to provide effective and safe drug products.Enzyme-linked immunosorbent assays are still the gold standard methods for the quantification of protein impurities.However,this technique has several limitations and does,among others,not enable the precise identification of proteins.In this context,mass spectrometry(MS)became an alternative and orthogonal method that delivers qualitative and quantitative information on all identified HCPs.However,in order to be routinely implemented in biopharmaceutical companies,liquid chromatography-MS based methods still need to be standardized to provide highest sensitivity and robust and accurate quantification.Here,we present a promising MS-based analytical workflow coupling the use of an innovative quantification standard,the HCP Profiler solution,with a spectral library-based data-independent acquisition(DIA)method and strict data validation criteria.The performances of the HCP Profiler solution were compared to more conventional standard protein spikes and the DIA approach was benchmarked against a classical datadependent acquisition on a series of samples produced at various stages of the manufacturing process.While we also explored spectral library-free DIA interpretation,the spectral library-based approach still showed highest accuracy and reproducibility(coefficients of variation<10%)with a sensitivity down to the sub-ng/mg mAb level.Thus,this workflow is today mature to be used as a robust and straightforward method to support mAb manufacturing process developments and drug products quality control.
基金supported by the National Key Research & Development Program of China (2021YFE0113300)the National Natural Science Foundation of China (22078286 and 21878263)+1 种基金Zhejiang Universitythe Talent-Introduction Program of China for the Postdoctoral Researcher for the financial support。
文摘Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs.