Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure,...Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure, and the phase analyses show that the product is in single phase. The luminescence spectra and decay curve were measured on a Hitachi F-4500 fluorescence spectrophotometer. The decay time was determined on an ST-900PM weak light photometer. The analyses show that host doping of Lu improves both luminescence and decay time of the materials. The concentration of doped Lu and Sm was varied in order to determine the optimal condition and to synthesize the product with the best properties. The mechanism of the long afterglow was also briefly discussed.展开更多
Buckybowl structures as non-uniform electrostatic potential distributions of poly-cyclic aromatic materials show a unique photoelectric performance.In this work,OTC was utilized for dynamic modulation of triplet excit...Buckybowl structures as non-uniform electrostatic potential distributions of poly-cyclic aromatic materials show a unique photoelectric performance.In this work,OTC was utilized for dynamic modulation of triplet exciton transition processes.Five host molecules with different functional units were selected,thus providing dif-ferent intermolecular interactions in the host/guest systems.Therefore,the delayed emissions were regulated from 536 to 624 nm via the tuning of the triplet exciton transition processes of OTC in different hosts.Experimental data and theoretical calculations revealed that the varied triplet transition behaviors resulted from the competition between the intersystem crossing(ISC)process of OTC-monomer and the reverse intersystem crossing(RISC)process of OTC-aggregates.This work proves the superior structure of buckybowl-based luminophore for controlling triplet exciton transition processes and supplies a new perspective for persistent afterglow luminophore design.展开更多
基金Project supported bythe Foundation of USTB,China
文摘Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure, and the phase analyses show that the product is in single phase. The luminescence spectra and decay curve were measured on a Hitachi F-4500 fluorescence spectrophotometer. The decay time was determined on an ST-900PM weak light photometer. The analyses show that host doping of Lu improves both luminescence and decay time of the materials. The concentration of doped Lu and Sm was varied in order to determine the optimal condition and to synthesize the product with the best properties. The mechanism of the long afterglow was also briefly discussed.
基金National Natural Scientific Foundation of China,Grant/Award Numbers:21975021,21975020,21875019,21871119,22105019,22175023Beijing National Laboratory for Molecular Sciences,Grant/Award Number:BNLMS192007BIT Research and Innovation Promoting Project,Grant/Award Number:2022YCXZ035。
文摘Buckybowl structures as non-uniform electrostatic potential distributions of poly-cyclic aromatic materials show a unique photoelectric performance.In this work,OTC was utilized for dynamic modulation of triplet exciton transition processes.Five host molecules with different functional units were selected,thus providing dif-ferent intermolecular interactions in the host/guest systems.Therefore,the delayed emissions were regulated from 536 to 624 nm via the tuning of the triplet exciton transition processes of OTC in different hosts.Experimental data and theoretical calculations revealed that the varied triplet transition behaviors resulted from the competition between the intersystem crossing(ISC)process of OTC-monomer and the reverse intersystem crossing(RISC)process of OTC-aggregates.This work proves the superior structure of buckybowl-based luminophore for controlling triplet exciton transition processes and supplies a new perspective for persistent afterglow luminophore design.