A 2-dimension axisymmetric model was developed by the finite-differencemethod, which can be used to predict the transient temperature field and thermal profile of workrolls in the hot strip rolling process. To demonst...A 2-dimension axisymmetric model was developed by the finite-differencemethod, which can be used to predict the transient temperature field and thermal profile of workrolls in the hot strip rolling process. To demonstrate the accuracy and reliability of the solutiondeveloped, the calculation results were compared with the production data of a 1700 mm hot striprolling mill and good agreement was found between them. The effect of strip width and roll shiftingon the thermal expansion of the work rolls was studied. It is found that the strip width has markedeffect on the efficient thermal crown. Initially, when the rolling strip changes from narrow towide, a bigger efficient thermal crown can be quickly achieved; afterwards, when the rolling stripchanges from wide to narrow, not only the influence of uneven wear can be reduced but also theexcessive efficient thermal crown can be avoided. It is also found that the work roll shifting has adeterminate but not obvious effect on the reduction of the efficient thermal crown, and will makethe strip shape unstable without being used properly.展开更多
A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element meth...A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect ...In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect of work roll diameter,unit width rolling load, roll bending force, work roll crown, initial strip crown and reduction, etc, on load distributioneffect rate was simulated by using the software. The results show that the load distribution effect rate increaseswith the increase of strip width, work roll diameter, unit width rolling load, roll bending force, work roll crown,initial strip crown and reduction. Based on the simulation results, base value of load distribution effect rate andfitting coefficients of six power polynomial of load distribution effect rate modification coefficient were determinedconsidering all of the above parameters. A simplified mathematical model for calculating load distribution effect ratewas established.展开更多
The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based o...The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based on the recrystallization kinetics equations, the mean flow stress and the rolling load of each pass were predicted and the optimum rolling schedule was proposed for hot strip rolling. The austenite grain refinement is associated with the addition of niobium, the decrease of starting temperature of finish rolling, and the reduction of finished thickness. The mean flow stress curve with a continuous rising characteristic can be usually observed in the finish rolling of niobium containing steel, which is formed as a result of the heavy incomplete softening and strain accumulation. The predic ted rolling loads are in good agreement with the measured ones.展开更多
In order to improve the quality of the strip for the hot continuous rolling, the high accuracy set-up control must be applied to production. In the paper, we analyze the RFC (profile and flatness control) system and s...In order to improve the quality of the strip for the hot continuous rolling, the high accuracy set-up control must be applied to production. In the paper, we analyze the RFC (profile and flatness control) system and simulate the set-up process. Calculation results are in agreement to the actual measurements. It is the basis on the developing model.展开更多
Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual stri...Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual strip rolling. According to its successful op- eration in the ASP 1700 hot strip mill of Angang Group for one year and also from the statistical results of several crown measurements, it can be definitely said that this control model is highly effective and shows stable performance. The control effectiveness of different gauges of strips with the feedback control is found to increase by 10%-30% compared with that without feedback control.展开更多
The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were ana...The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation展开更多
Since the 2050 mm hot strip mill was put into operation in 1989, Baosteel has made great achievements in increasing productivity, developing new process technologies and steel products and improving product quality. I...Since the 2050 mm hot strip mill was put into operation in 1989, Baosteel has made great achievements in increasing productivity, developing new process technologies and steel products and improving product quality. In the past 18 years from 1989 to 2007 ,Baosteel has constructed five hot strip mills with a total annual capacity of 19.8 Mt. Indices for technology standards, product categories and steel grades, product quality, both technically and economically, take the lead domestically or reached the world class level. As there are many hot strip mills that expected to be put into operation by the end of 2010 ,the overall annual capacity will exceed 30 Mt ,and the product will cover grain oriented (GO) Si steels and alloyed steels.展开更多
The thermal expansion of work rolls during hot strip rolling was modeled by a two-dimensional difference method. The calculation model was validated by comparison between the predictions to the measured results. With ...The thermal expansion of work rolls during hot strip rolling was modeled by a two-dimensional difference method. The calculation model was validated by comparison between the predictions to the measured results. With that model ,the effects of rolling process parameters such as the rolling plan, mill pacing ,coolant flow rate and stepped cooling on the roll thermal profile were investigated. The result shows that stepped cooling of work rolls can be used to control complicated flatness defects such as quarter buckles during hot strip rolling.展开更多
Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. ...Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. The frame of the tension adjusting system is given. The coiler control system hardware is designed. The system is designed scientifically with steady control and meets demand of the market.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation...The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.展开更多
The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed ...The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.展开更多
The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of ox...The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
After water cooling, there is a big temperature difference between the center and the surface of strip, which leads to the heat transfer from the center to the surface, and the surface temperature can rise in a short ...After water cooling, there is a big temperature difference between the center and the surface of strip, which leads to the heat transfer from the center to the surface, and the surface temperature can rise in a short time. The finite element method was used to simulate the phenomena of re-reddening on the surface of strip and to analyze the temperature field of hot roiled strip during laminar cooling, and the periodical variation curve of the cooling rate was obtained during water cooling and subsequent re-reddening. The results show that the critical line of the cooling rate is at 1/3 of the half-thickness from the strip surface. The regression model of the relation of rereddening temperature, time, and distance from the surface was obtained in the re-reddening region. Re-reddening regularity on the surface of strip under the condition of different thickness and cooling rate was also studied.展开更多
Ultra-fast cooling (UFC) is an advanced technology in hot rolling field. Through this technology, great changes on the run-out table are produced in the strip cooling process. In order to adapt to these changes, a n...Ultra-fast cooling (UFC) is an advanced technology in hot rolling field. Through this technology, great changes on the run-out table are produced in the strip cooling process. In order to adapt to these changes, a new gen-eration of hot strip cooling control system after rolling was developed based on the UFC basic principle. The system can not only accomplish temperature of UFC delivery side, coiling temperature, cooling rate, etc, and multi-objective accuracy control, but also offer more flexibility and new attractive possibilities in terms of cooling pattern on the run-out table, which could be of prime importance for the production of some difficult steels. In addition, through the time-velocity-distance (TVD) profile prediction combined with speed feed-forward control and coiling temperature feedback control, the coiling temperature control precision can be effectively improved during accelerative rolling in the system. At present, the system has been successfully used in the conventional strip production line and CSP short process production line, and its application effect is perfect.展开更多
Non-uniformity of temperature distribution across strip width direction is the ultimate reason why the flatness defect occurs on the strip after cooling process although the strip is flat at the exit of finishing mill...Non-uniformity of temperature distribution across strip width direction is the ultimate reason why the flatness defect occurs on the strip after cooling process although the strip is flat at the exit of finishing mill.One thermal , microstructural and mechanical coupling analysis model for predicting flatness change of steel strip during the run-out table cooling process was established using ABAQUS finite element software.K Esaka phase transformation kinetics model was employed to calculate the phase transformation , and coupled with temperature calculation using the user subroutine program HETVAL.Elasto-plasticity constitutive equations of steel material , in which conventional elastic and plastic strains , thermal strain , phase transformation strain and transformation induced plastic strain were considered , were derived and programmed in the user subroutine program UMAT.The conclusion that flatness of steel strip will develop to edge wave defect under the functions of the differential thermal and microstructural behaviors across strip width during the run-out table cooling procedure was acquired through the analysis results of this model.Calculation results of this analysis model agree well with the actual measurements and observation.展开更多
基金This work was financially supported by the Excellent Young Teachers Program of the Education Ministry of China (No. 261)
文摘A 2-dimension axisymmetric model was developed by the finite-differencemethod, which can be used to predict the transient temperature field and thermal profile of workrolls in the hot strip rolling process. To demonstrate the accuracy and reliability of the solutiondeveloped, the calculation results were compared with the production data of a 1700 mm hot striprolling mill and good agreement was found between them. The effect of strip width and roll shiftingon the thermal expansion of the work rolls was studied. It is found that the strip width has markedeffect on the efficient thermal crown. Initially, when the rolling strip changes from narrow towide, a bigger efficient thermal crown can be quickly achieved; afterwards, when the rolling stripchanges from wide to narrow, not only the influence of uneven wear can be reduced but also theexcessive efficient thermal crown can be avoided. It is also found that the work roll shifting has adeterminate but not obvious effect on the reduction of the efficient thermal crown, and will makethe strip shape unstable without being used properly.
基金ItemSponsored by National Natural Science Foundation of China (50275130) Provincial Natural Science Foundation ofHebei Province of China (E200400223)
文摘A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金This study was financially supported by the National Natural Science Foundation of China under the contract No.59995440the State Key Development Programming on Foundamental Research under the contract No.G2000067208-4the Natural Science Foundation of Liaoning Province under the contract No.2001101021.
文摘In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect of work roll diameter,unit width rolling load, roll bending force, work roll crown, initial strip crown and reduction, etc, on load distributioneffect rate was simulated by using the software. The results show that the load distribution effect rate increaseswith the increase of strip width, work roll diameter, unit width rolling load, roll bending force, work roll crown,initial strip crown and reduction. Based on the simulation results, base value of load distribution effect rate andfitting coefficients of six power polynomial of load distribution effect rate modification coefficient were determinedconsidering all of the above parameters. A simplified mathematical model for calculating load distribution effect ratewas established.
基金Item Sponsored by National Natural Science Foundation of China (50504007 ,50474086 ,50334010)
文摘The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based on the recrystallization kinetics equations, the mean flow stress and the rolling load of each pass were predicted and the optimum rolling schedule was proposed for hot strip rolling. The austenite grain refinement is associated with the addition of niobium, the decrease of starting temperature of finish rolling, and the reduction of finished thickness. The mean flow stress curve with a continuous rising characteristic can be usually observed in the finish rolling of niobium containing steel, which is formed as a result of the heavy incomplete softening and strain accumulation. The predic ted rolling loads are in good agreement with the measured ones.
文摘In order to improve the quality of the strip for the hot continuous rolling, the high accuracy set-up control must be applied to production. In the paper, we analyze the RFC (profile and flatness control) system and simulate the set-up process. Calculation results are in agreement to the actual measurements. It is the basis on the developing model.
文摘Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual strip rolling. According to its successful op- eration in the ASP 1700 hot strip mill of Angang Group for one year and also from the statistical results of several crown measurements, it can be definitely said that this control model is highly effective and shows stable performance. The control effectiveness of different gauges of strips with the feedback control is found to increase by 10%-30% compared with that without feedback control.
文摘The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation
文摘Since the 2050 mm hot strip mill was put into operation in 1989, Baosteel has made great achievements in increasing productivity, developing new process technologies and steel products and improving product quality. In the past 18 years from 1989 to 2007 ,Baosteel has constructed five hot strip mills with a total annual capacity of 19.8 Mt. Indices for technology standards, product categories and steel grades, product quality, both technically and economically, take the lead domestically or reached the world class level. As there are many hot strip mills that expected to be put into operation by the end of 2010 ,the overall annual capacity will exceed 30 Mt ,and the product will cover grain oriented (GO) Si steels and alloyed steels.
文摘The thermal expansion of work rolls during hot strip rolling was modeled by a two-dimensional difference method. The calculation model was validated by comparison between the predictions to the measured results. With that model ,the effects of rolling process parameters such as the rolling plan, mill pacing ,coolant flow rate and stepped cooling on the roll thermal profile were investigated. The result shows that stepped cooling of work rolls can be used to control complicated flatness defects such as quarter buckles during hot strip rolling.
文摘Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. The frame of the tension adjusting system is given. The coiler control system hardware is designed. The system is designed scientifically with steady control and meets demand of the market.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金the National Major Technology Equipment Research Program during the 9th Five-Year Plan Period (No.97-316-01-1).
文摘The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.
基金This work was supported by the National High Technical Reasearch and Development Programme of China(No.2001AA339030)Shenyang Ligong University Foundation(No.3200903).
文摘The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.
基金supported by the National Natural Science Foundation of China(No.51222106)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金the Major State Basic Research Development Program of China(No.2014CB643300)the Beijing Municipal Commission of Education
文摘The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.
基金Item Sponsored by National Natural Science Foundation of China(50504007)State Basic Research Key Projects (973) of China(2006CB605208-1)
文摘After water cooling, there is a big temperature difference between the center and the surface of strip, which leads to the heat transfer from the center to the surface, and the surface temperature can rise in a short time. The finite element method was used to simulate the phenomena of re-reddening on the surface of strip and to analyze the temperature field of hot roiled strip during laminar cooling, and the periodical variation curve of the cooling rate was obtained during water cooling and subsequent re-reddening. The results show that the critical line of the cooling rate is at 1/3 of the half-thickness from the strip surface. The regression model of the relation of rereddening temperature, time, and distance from the surface was obtained in the re-reddening region. Re-reddening regularity on the surface of strip under the condition of different thickness and cooling rate was also studied.
基金Item Sponsored by National Natural Science and Technology Support Program in 12th Five-Year Plan of China ( 2012BAF04B01 )
文摘Ultra-fast cooling (UFC) is an advanced technology in hot rolling field. Through this technology, great changes on the run-out table are produced in the strip cooling process. In order to adapt to these changes, a new gen-eration of hot strip cooling control system after rolling was developed based on the UFC basic principle. The system can not only accomplish temperature of UFC delivery side, coiling temperature, cooling rate, etc, and multi-objective accuracy control, but also offer more flexibility and new attractive possibilities in terms of cooling pattern on the run-out table, which could be of prime importance for the production of some difficult steels. In addition, through the time-velocity-distance (TVD) profile prediction combined with speed feed-forward control and coiling temperature feedback control, the coiling temperature control precision can be effectively improved during accelerative rolling in the system. At present, the system has been successfully used in the conventional strip production line and CSP short process production line, and its application effect is perfect.
文摘Non-uniformity of temperature distribution across strip width direction is the ultimate reason why the flatness defect occurs on the strip after cooling process although the strip is flat at the exit of finishing mill.One thermal , microstructural and mechanical coupling analysis model for predicting flatness change of steel strip during the run-out table cooling process was established using ABAQUS finite element software.K Esaka phase transformation kinetics model was employed to calculate the phase transformation , and coupled with temperature calculation using the user subroutine program HETVAL.Elasto-plasticity constitutive equations of steel material , in which conventional elastic and plastic strains , thermal strain , phase transformation strain and transformation induced plastic strain were considered , were derived and programmed in the user subroutine program UMAT.The conclusion that flatness of steel strip will develop to edge wave defect under the functions of the differential thermal and microstructural behaviors across strip width during the run-out table cooling procedure was acquired through the analysis results of this model.Calculation results of this analysis model agree well with the actual measurements and observation.