Hot-melt (HM) adhesives offer advantages over their contemporary water-based and solvent-based adhesives like low volatile organic compounds (VOCs), 100% solid, fast drying, setting etc. In recent years, to reduce the...Hot-melt (HM) adhesives offer advantages over their contemporary water-based and solvent-based adhesives like low volatile organic compounds (VOCs), 100% solid, fast drying, setting etc. In recent years, to reduce their dependence on dwindling petroleum resources and due to the enormous use of HM adhesives in packaging areas that demand 100% recyclability, efforts have been devoted to making these formulations completely bio-based, sustainable and biodegradable. In this attempt, research and developments have been focused on using starch, modified starch, soy protein, polylactides, polyamides, lignin and vegetable oils as a partial/fully replacement to the petrochemical</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">based polymers. The huge amount of research going on in the field of bio-based polymers has still not reached its complete potential in the field of HM adhesives. In this review paper</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> HM adhesives based on sustainable raw materials namely starch, modified starch, polyamides, poly (lactic acid), soy protein and lignin are discussed.展开更多
The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decreas...The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.展开更多
Currently, due to scarcity of hydrocarbon resources and the extensive use of water based, solvent based and hot melt adhesives in wood bonding in furniture industries and packaging industries that demand recyclability...Currently, due to scarcity of hydrocarbon resources and the extensive use of water based, solvent based and hot melt adhesives in wood bonding in furniture industries and packaging industries that demand recyclability, compostability and bio-degradability, recently attention has been concentrated to making these formulations completely bio-based, sustainable and biodegradable. Biodegradable hot melt adhesives (HMAs) prepared from natural sources have a potential for use in furniture and packaging industries because of an increase in awareness of environmental issues, the replacement of conventional petroleum-derived hydrocarbon raw materials by renewable, biodegradable and sustainable materials has developed. In terms of environmental issues, such as climate crisis due to an increase of carbon dioxide emission, attempts have been made to produce HMAs using non-hydrocarbon resins, such as polylactic acid (PLA)-based resins, containing no petroleum as a raw material. Polylactic acid was prepared by self-condensation reactions of lactic acid or by lactide ring opening polymerisation, and used for packaging materials, sanitary pads, diapers etc., especially adhesives owing to its excellent processability and the excellent mechanical properties of its HMAs products. Therefore, recently the use of PLA materials as a substitute for non-biodegradable hydrocarbon-based polymers can be considered to be environmentally favourable. Here, we discussed the various uses of PLA as a sustainable and bio-degradable and sustainable hot melt adhesive.展开更多
A selection of 22 low-melting polymers was thermally and rheologically evaluated to be used as hot-melt adhesives in mixed-substrate joining samples. The choice of polymers was based on the published melting point. It...A selection of 22 low-melting polymers was thermally and rheologically evaluated to be used as hot-melt adhesives in mixed-substrate joining samples. The choice of polymers was based on the published melting point. It was required to include a broad variety of different polymers backbones to study the influence of the different polymers comprehensively. A tool-box of widely applicable tests was developed to judge if a thermoplastic polymer is suitable for a hot-melt adhesive application. Melting temperature (onset, peak and offset temperature) and melting enthalpy were determined using standardized methods. Rheological methods were used to characterize the shear rate dependence and the flow behavior at the application temperature. The wetting behavior of the polymers was evaluated with contact angle measurements. The adhesive strength of the most promising candidates was analyzed using the Lumi Frac-adhesion method including the failure pattern.展开更多
In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing met...In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances.展开更多
文摘Hot-melt (HM) adhesives offer advantages over their contemporary water-based and solvent-based adhesives like low volatile organic compounds (VOCs), 100% solid, fast drying, setting etc. In recent years, to reduce their dependence on dwindling petroleum resources and due to the enormous use of HM adhesives in packaging areas that demand 100% recyclability, efforts have been devoted to making these formulations completely bio-based, sustainable and biodegradable. In this attempt, research and developments have been focused on using starch, modified starch, soy protein, polylactides, polyamides, lignin and vegetable oils as a partial/fully replacement to the petrochemical</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">based polymers. The huge amount of research going on in the field of bio-based polymers has still not reached its complete potential in the field of HM adhesives. In this review paper</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> HM adhesives based on sustainable raw materials namely starch, modified starch, polyamides, poly (lactic acid), soy protein and lignin are discussed.
基金funded by General Motors Global Research and Development Center(Grant No.:PS21025708)
文摘The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.
文摘Currently, due to scarcity of hydrocarbon resources and the extensive use of water based, solvent based and hot melt adhesives in wood bonding in furniture industries and packaging industries that demand recyclability, compostability and bio-degradability, recently attention has been concentrated to making these formulations completely bio-based, sustainable and biodegradable. Biodegradable hot melt adhesives (HMAs) prepared from natural sources have a potential for use in furniture and packaging industries because of an increase in awareness of environmental issues, the replacement of conventional petroleum-derived hydrocarbon raw materials by renewable, biodegradable and sustainable materials has developed. In terms of environmental issues, such as climate crisis due to an increase of carbon dioxide emission, attempts have been made to produce HMAs using non-hydrocarbon resins, such as polylactic acid (PLA)-based resins, containing no petroleum as a raw material. Polylactic acid was prepared by self-condensation reactions of lactic acid or by lactide ring opening polymerisation, and used for packaging materials, sanitary pads, diapers etc., especially adhesives owing to its excellent processability and the excellent mechanical properties of its HMAs products. Therefore, recently the use of PLA materials as a substitute for non-biodegradable hydrocarbon-based polymers can be considered to be environmentally favourable. Here, we discussed the various uses of PLA as a sustainable and bio-degradable and sustainable hot melt adhesive.
文摘A selection of 22 low-melting polymers was thermally and rheologically evaluated to be used as hot-melt adhesives in mixed-substrate joining samples. The choice of polymers was based on the published melting point. It was required to include a broad variety of different polymers backbones to study the influence of the different polymers comprehensively. A tool-box of widely applicable tests was developed to judge if a thermoplastic polymer is suitable for a hot-melt adhesive application. Melting temperature (onset, peak and offset temperature) and melting enthalpy were determined using standardized methods. Rheological methods were used to characterize the shear rate dependence and the flow behavior at the application temperature. The wetting behavior of the polymers was evaluated with contact angle measurements. The adhesive strength of the most promising candidates was analyzed using the Lumi Frac-adhesion method including the failure pattern.
基金Funded by the National Natural Science Foundation of China(Nos.51378242 and 51008146)the Transportation Industry Science and Technology Project of Beijing(No.kj2013-2-14)
文摘In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances.