期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Anthropogenic Influence on Decadal Changes in Concurrent Hot and Dry Events over China around the Mid-1990s 被引量:1
1
作者 Qin SU Buwen DONG +1 位作者 Fangxing TIAN Nicholas P.KLINGAMAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期233-246,共14页
The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characteriz... The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed. 展开更多
关键词 concurrent hot and dry events decadal variation greenhouse gases aerosol emissions
下载PDF
Performance Study of Dynamic Intake and Exhaust Facades in Hot and Dry Climates:Iraq Case Study
2
作者 S.M.Hosseinalipour S.Asiaei Ammar A.Hussain Al-Taee 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期747-767,共21页
This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact.This study focused on the implementation and development of dynamic insulation t... This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact.This study focused on the implementation and development of dynamic insulation technology for a sustainable and energy-efficient future in the region,especially in Iraq.The study assessed the energy efficiency of dynamic insulation technology by analyzing three wallmodels(static,dynamic,and modified)during thewinter season.This paper expands the analysis to include a hot,dry summer scenario,providing valuable insights into the year-round performance of dynamic walls and enabling sustainable and energy-efficient solutions for Iraq’s climate.The study evaluates the thermal efficiency of the dynamic intake and exhaust facades during the cooling season for the city of Baghdad.The finding indicated that the dynamic intake facade reduces energy consumption by 16.3%for the dynamic wall and 17.2%for the modified dynamic wall.In addition,the dynamic exhaust front reduces energy consumption by 46%during the cooling season,with the maximum permissible exhaust air level.Dynamic insulation is suitable for hot and dry climates,improving energy consumption. 展开更多
关键词 Polystyrene beads static and dynamic facades hot and dry climate indoor air quality
下载PDF
Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes
3
作者 Arnaud Louis Sountong-Noma Ouedraogo Césaire Hema +2 位作者 Sjoerd Moustapha N’guiro Philbert Nshimiyimana Adamah Messan 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期1-16,共16页
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid... Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material. 展开更多
关键词 Compressed Earth Blocks hot and dry Climate Thermal Comfort Architectural Optimization of Thermal Models Cement Blocks Empirical Validation
下载PDF
The Extremely Hot and Dry Climatic Events and Potash Enrichment in Salt Lakes of the Jiangling Depression, Jianghan Basin 被引量:7
4
作者 WANG Chunlian LIU Chenglin +2 位作者 YU Xiaocan LI Haonan LIU Jinlei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期769-770,共2页
Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions a... Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions and mechanism. The Well SKDI is the first exploration well drilled in the Paleogene of Jianghan Basin with continuous coring, which was implemented in the south-central Jiangling Basin in 2013. It is essential to study the Palaeocene-Eocene paleoclimate, to further constrain the extreme draught events and the potash forming conditions. 展开更多
关键词 The Extremely hot and dry Climatic Events and Potash Enrichment in Salt Lakes of the Jiangling Depression Jianghan Basin
下载PDF
Bivariate attribution of the compound hot and dry summer of 2022 on the Tibetan Plateau
5
作者 Baiquan ZHOU Panmao ZHAI Zhen LIAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2122-2136,共15页
The extraordinarily high temperatures experienced during the summer of 2022 on the Tibetan Plateau(TP)demand attention when compared with its typical climatic conditions.The absence of precipitation alongside the elev... The extraordinarily high temperatures experienced during the summer of 2022 on the Tibetan Plateau(TP)demand attention when compared with its typical climatic conditions.The absence of precipitation alongside the elevated temperatures resulted in 2022 being the hottest and driest summer on record on the TP since at least 1961.Recognizing the susceptibility of the TP to climate change,this study employed large-ensemble simulations from the HadGEM3-A-N216 attribution system,together with a copula-based joint probability distribution,to investigate the influence of anthropogenic forcing,primarily global greenhouse gas emissions,on this unprecedented compound hot and dry event(CHDE).Findings revealed that the return period for the 2022 CHDE on the TP exceeds 4000 years,as determined from the fitted joint distributions derived using observational data spanning 1961-2022.This CHDE was directly linked to large-scale circulation anomalies,including the control of equivalent-barotropic high-pressure anomalies and the northward displacement of the subtropical westerly jet stream.Moreover,anthropogenic forcing has,to some extent,promoted the surface warming and increased variability in precipitation on the TP in summer,establishing conditions conducive for the 2022 CHDE from a long-term climate change perspective.The return period for a 2022-like CHDE on the TP was estimated to be approximately 283 years(142-613 years)by the large ensemble forced by both anthropogenic activities and natural factors.Contrastingly,ensemble simulations driven solely by natural forcing indicated that the likelihood of occurrence of a 2022-like CHDE was almost negligible.These outcomes underscore that the contribution of anthropogenic forcing to the probability of a 2022-like CHDE was 100%,implying that without anthropogenically induced global warming,a comparable CHDE akin to that observed in 2022 on the TP would not be possible. 展开更多
关键词 Compound hot and dry event Tibetan Plateau Bivariate event attribution Anthropogenic forcing
原文传递
Detection and Attribution of Changes in Summer Compound Hot and Dry Events over Northeastern China with CMIP6 Models 被引量:8
6
作者 Wei LI Zhihong JIANG +2 位作者 Laurent ZXLI Jing-Jia LUO Panmao ZHAI 《Journal of Meteorological Research》 SCIE CSCD 2022年第1期37-48,共12页
Northeastern China has experienced a significant increase in summer compound hot and dry events(CHDEs),posing a threat to local agricultural production and sustainable development.This study investigates the detectabl... Northeastern China has experienced a significant increase in summer compound hot and dry events(CHDEs),posing a threat to local agricultural production and sustainable development.This study investigates the detectable anthropogenic signal in the long-term trend of CHDE and quantifies the contribution of different external forcings.A probability-based index(PI)is constructed through the joint probability distribution to measure the severity of CHDE,with lower values representing more severe cases.Response of CHDE to external forcing was assessed with simulations from the Coupled Model Intercomparison Project phase 6(CMIP6).The results show a significant increase in the severity of CHDE over northeastern China during the past decades.The trend of regional averaged PI is-0.28(90%confidence interval:-0.43 to-0.13)per 54 yr and it is well reproduced in the historical forcing simulations.The attribution method of optimal fingerprinting was firstly applied to a two-signal configuration with anthropogenic forcing and natural forcing;the anthropogenic impact was robustly detected and it explains most of the observed trend of PI.Similarly,three-signal analysis further demonstrated that the anthropogenic greenhouse gases dominantly contribute to the observed change,while the anthropogenic aerosol and natural forcing have almost no contribution to the observed changes.For a compound event concurrently exceeding the 95 th percentile of surface air temperature and precipitation reversal in the current period,its likelihood exhibits little change at 1.5℃global warming,but almost doubled at 2.0℃global warming. 展开更多
关键词 compound hot and dry event(CHDE) detection and attribution northeastern China future projection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部