期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Model of critical strain for dynamic recrystallization in 10%TiC/Cu-Al_2O_3 composite 被引量:4
1
作者 杨志强 刘勇 +1 位作者 田保红 张毅 《Journal of Central South University》 SCIE EI CAS 2014年第11期4059-4065,共7页
Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the tempe... Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826. 展开更多
关键词 10%Ti C/Cu-Al2O3 composite hot deformation constitutive equation dynamic recrystallization critical condition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部