期刊文献+
共找到314篇文章
< 1 2 16 >
每页显示 20 50 100
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
1
作者 Petr Opela Josef Walek Jaromír Kopecek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期713-732,共20页
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al... In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis. 展开更多
关键词 Machine learning Gaussian process regression artificial neural networks support vector machine hot deformation behavior
下载PDF
Enhancing constitutive description and workability characterization of Mg alloy during hot deformation using machine learning-based Arrhenius-type model 被引量:1
2
作者 Jinchuan Long Lei Deng +6 位作者 Junsong Jin Mao Zhang Xuefeng Tang Pan Gong Xinyun Wang Gangfeng Xiao Qinxiang Xia 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期3003-3023,共21页
Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,a... Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,and strain,leading to complex flow behavior and an exceptionally narrow processing window for Mg alloy.To overcome the shortcomings of the conventional Arrhenius-type(AT)model,this study developed machine learning-based Arrhenius-type(ML-AT)models by combining the genetic algorithm(GA),particle swarm optimization(PSO),and artificial neural network(ANN).Results indicated that when describing the flow behavior of the AQ80 alloy,the PSO-ANN-AT model demonstrates the most prominent prediction accuracy and generalization ability among all ML-AT and AT models.Moreover,an activation energy-processing(AEP)map was established using the reconstructed flow stress and activation energy fields based on the PSO-ANN-AT model.Experimental validations revealed that this AEP map exhibits superior predictive capability for microstructure evolution compared to the one established by the traditional interpolation methods,ultimately contributing to the precise determination of the optimum processing window.These findings provide fresh insights into the accurate constitutive description and workability characterization of Mg alloy during hot deformation. 展开更多
关键词 Constitutive description Workability characterization Machine learning Mg alloy hot deformation
下载PDF
Effect of Gd Addition on Hot Deformation Behavior and Microstructure Evolution of 7075 Aluminum Alloy
3
作者 LI Yajie FAN Xuran +2 位作者 QIN Fengming ZHAO Xiaodong CAO Kefan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1595-1612,共18页
In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at... In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy. 展开更多
关键词 Al-Zn-Mg-Cu-Gd hot deformation behavior constitutive model dynamic recrystallization microstructure evolution
下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
4
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
下载PDF
Two-stage dynamic recrystallization and texture evolution in Al-7Mg alloy during hot torsion
5
作者 Kwang Tae Son Chang Hee Cho +1 位作者 Myoung Gyun Kim Ji Woon Lee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1900-1911,共12页
Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behavio... Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX). 展开更多
关键词 Al-7Mg alloys hot deformation hot torsion tests dynamic recrystazlliation microstructure texture
下载PDF
Hot Compressive Deformation Characteristics of Al-9.3Zn-2.4Mg-1.1Cu Alloy
6
作者 刘鹏茹 郝世明 XIE Jingpei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期754-765,共12页
To understand the hot compression deformation characteristics of the self-developed Al-9.3Zn-2.4Mg^(-1).1Cu alloy,the hot compression tests of Al-9.3Zn-2.4Mg^(-1).1Cu alloy were investigated by Gleeble 1500 thermo-mec... To understand the hot compression deformation characteristics of the self-developed Al-9.3Zn-2.4Mg^(-1).1Cu alloy,the hot compression tests of Al-9.3Zn-2.4Mg^(-1).1Cu alloy were investigated by Gleeble 1500 thermo-mechanical simulator to determine the best hot processing conditions.The hot deformation temperatures were 300,350,400,and 450℃,and the strain rates were 1,0.1,0.01,and 0.003 s^(-1),respectively.Based on the experimental results,the constitutive equation and hot processing maps are established,and the corresponding strain rate and temperature-sensitive index are analyzed.The results show that Al-9.3Zn-2.4Mg^(-1).1Cu alloy has a dynamic softening trend and high strain rate sensitivity during the isothermal compression process.The hot deformation behavior can be described by an Arrhenius-type equation after strain compensation.The temperature has a negligible effect on the hot processing properties,while a low strain rate is favorable for the hot working of alloy.The processing maps and microstructure show that the optimal processing conditions were in the temperature range of 400-450℃and strain rate range of 0.003-0.005 s^(-1). 展开更多
关键词 Al-Zn-Mg-Cu alloy hot working hot deformation behavior constitutive equations processing maps
下载PDF
Hot Deformation Behavior of Ti-6Al-4V-0.5Ni-0.5Nb Titanium Alloy
7
作者 ZHU Guochuan LIU Qiang +6 位作者 SONG Shengyin HUI Songxiao YU Yang YE Wenjun QI Jun TANG Zhengwei XU Penghai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1270-1277,共8页
Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The... Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1). 展开更多
关键词 titanium alloy hot deformation processing map dynamic recrystallization
下载PDF
Microstructure evolution and hot workability of in-situ synthesized Ti_(2)AlC/TiAl composite
8
作者 Yu-peng WANG Teng-fei MA +4 位作者 Lei LI Long-long DONG Wang-tu HUO Yu-sheng ZHANG Lian ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第12期3905-3918,共14页
The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano ... The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano particles on flow stress and dynamic recrystallization of composite was discussed.The results showed that the micro-nano Ti_(2)AlC particles included strengthening and softening effects during hot deformation,resulting in the fact that the Ti_(2)AlC/TiAl composite exhibited a higher flow stress and more sufficient dynamic recrystallization.The strengthening effect was mainly attributed to the Ti_(2)AlC particles induced refinement strengthening and hindered dislocation motion at the initial stage.Moreover,the precipitation of nano-TiCr2 particles induced by stress concentration during hot deformation also contributed to higher flow stress via impeding dislocation motion.Meanwhile,the refined microstructure and dislocation pile-up caused by micro-nano particles during deformation provided more nucleation sites for dynamic recrystallization,which significantly promoted the dynamic recrystallization of the second stage.The present results reveal that the Ti_(2)AlC/TiAl composite exhibited excellent hot workability,which is important to promote the application of TiAl alloys. 展开更多
关键词 Ti_(2)AlC/TiAl composite spark plasma sintering hot deformation microstructure evolution dynamic recrystallization
下载PDF
Hot deformation behavior of extruded AZ80 magnesium alloy 被引量:12
9
作者 李慧中 卫晓燕 +2 位作者 欧阳杰 姜俊 李轶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3180-3185,共6页
The hot deformation behavior of extruded AZ80 magnesium alloy was studied through hot compression tests performed at temperatures ranging from 250 to 450 ~C with strain rates varying from 0.001 to 10 s-1. The flow str... The hot deformation behavior of extruded AZ80 magnesium alloy was studied through hot compression tests performed at temperatures ranging from 250 to 450 ~C with strain rates varying from 0.001 to 10 s-1. The flow stress was corrected due to the deformation heating. The Zener-Hollomon parameter (Z parameter) and processing map were established to describe the hot deformation behavior. The results indicate that the applicable deformation should be conducted at the strain rate of 0.1 s-~ and the temperature range of 350-400 ~C. Besides, the relationship between the microstructure evolution and Z parameter was also discussed. High temperature and low strain rate result in a low Z parameter, which leads to full dynamic recrystallization (DRX) and large DRX grain size in the microstructure. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 400 ~C and the strain rate of 0.1 s 1. 展开更多
关键词 AZ80 magnesium alloys hot deformation processing map Z parameter
下载PDF
Modeling of strain hardening and dynamic recrystallization of ZK60 magnesium alloy during hot deformation 被引量:11
10
作者 何运斌 潘清林 +3 位作者 陈琴 张志野 刘晓艳 李文斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期246-254,共9页
The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A... The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases. 展开更多
关键词 magnesium alloys flow stress strain hardening dynamic recrystallization hot deformation
下载PDF
Microstructural evolution of 2026 aluminum alloy during hot compression and subsequent heat treatment 被引量:7
11
作者 张辉 陈容 +1 位作者 黄旭东 陈江华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期955-961,共7页
2026 aluminum alloy was compressed in a temperature range of 300-450 ℃ and strain rate range of 0.01-10 s^-1. The correlation between compression conditions and microstructural evolution after solution and aging heat... 2026 aluminum alloy was compressed in a temperature range of 300-450 ℃ and strain rate range of 0.01-10 s^-1. The correlation between compression conditions and microstructural evolution after solution and aging heat treatment was investigated. It is found that the recrystallization and precipitation behavior after heat treatment are associated with the temperature compensated strain rate Z value during hot deformation. Under low Z parameter condition, a small quantity of free recrystallized grains are formed, and the well formed subgrains with clean high-angle boundaries and coarse precipitates seem to be remained during heat treatment. Under high Z parameter condition, a large number of fine equiaxed recrystallized grains are produced, and a high dislocation density with poorly developed cellularity and considerable fine dynamic precipitates are replaced by the well formed subgrains and relatively coarse precipitates after heat treatment. The average recrystallized grain size after heat treatment decreases with increasing Z value and a quantitative relation between the average grain size and the Z value is obtained. 展开更多
关键词 2026 aluminum alloy hot deformation heat treatment RECRYSTALLIZATION precipitation
下载PDF
Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy 被引量:12
12
作者 陈送义 陈康华 +1 位作者 贾乐 彭国胜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期329-334,共6页
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t... The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12. 展开更多
关键词 7085 aluminum alloy Zener-Hollomon parameter hot deformation grain structure dynamic recrystallization static recrystallization
下载PDF
Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation 被引量:12
13
作者 江树勇 张艳秋 赵亚楠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期140-147,共8页
Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-... Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains. 展开更多
关键词 NiTi alloy shape memory alloy dynamic recovery dynamic recrystallization hot deformation
下载PDF
Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field 被引量:12
14
作者 许鑫 董利民 +2 位作者 巴宏波 张志强 杨锐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2874-2882,共9页
The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot defor... The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained anda processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM),scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stressincreases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activationenergy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit adynamic recrystallization domain in the temperature range of 900-1000 ℃ and strain rate range of 0.1-1 s^-1. An instability regionexists when the strain rate is higher than 1.7 s^-1. The microstructure of beta C titanium alloy can be optimized by proper heattreatments after the deformation in the dynamic recrystallization domain. 展开更多
关键词 titanium alloy hot deformation dynamic recrystallization processing map
下载PDF
Effects of initial δ phase(Ni_3Nb) on hot tensile deformation behaviors and material constants of Ni-based superalloy 被引量:8
15
作者 蔺永诚 何敏 +2 位作者 陈明松 温东旭 陈荐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期107-117,共11页
Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found... Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found that the true stress-true strain curves exhibit peak stress at a small strain, and the peak stress increases with the increase of initial δ phase. After the peak stress, initial δ phase promotes the dynamic softening behaviors, resulting in the decreased flow stress. An improved Arrhenius constitutive model is proposed to consider the synthetical effects of initial δ phase, deformation temperature, strain rate, and strain on hot deformation behaviors. In the improved model, material constants are expressed as the functions of the content of initial δ phase and strain. A good agreement between the predicted and measured results indicates that the improved Arrhenius constitutive model can well describe hot deformation behaviors of the studied Ni-based superalloy. 展开更多
关键词 Ni-based superalloy hot deformation initial δ phase constitutive model material constants
下载PDF
Hot deformation behavior of TC11/Ti-22Al-25Nb dual-alloy in isothermal compression 被引量:7
16
作者 秦春 姚泽坤 +2 位作者 宁永权 石志峰 郭鸿镇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2195-2205,共11页
The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Bas... The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Based on the experimental data,the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature is obtained.The apparent activation energy of deformation is calculated,which decreases with increasing the strain and the value is 334 kJ/mol at strain of 0.90.The efficiency of power dissipation η changes obviously with the variation of deformation conditions.Under the strain rates of 0.01,0.1 and 1 s-(-1),the value of η increases with increasing the true strain for different deformation temperatures.While the value of η decreases with increasing the strain under the strain rates of 0.001 and 10 s-(-1).The optimum processing condition is(t(opi)=1060℃,ε(opi)=0.1 s-(-1)) with the peak efficiency of 0.51.Under this deformation,dynamic recrystallization(DRX) is observed obviously in the microstructure of welding zone.Under the condition of 1060℃ and 0.001 s-(-1),the deformation mechanism is dominated by dynamic recovery(DRV) and the value of η decreases sharply(η=0.02).The flow instability is predicted to occur since the instability parameter ξ(ε)becomes negative.The hot working process can be carried out safely in the domain with the strain rate of 0.001-0.6 s-(-1) and the temperature of 900-1060℃. 展开更多
关键词 dual-alloy hot deformation processing map apparent activation energy MICROSTRUCTURE
下载PDF
Constitutive equation and processing map for hot compressed as-cast Ti-43Al-4Nb-1.4W-0.6B alloy 被引量:5
17
作者 李建波 刘咏 +3 位作者 王岩 刘彬 卢斌 梁霄鹏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3383-3391,共9页
High temperature compressive deformation behaviors of as-cast Ti-43Al-4Nb-1.4W-0.6B alloy was investigated at temperatures ranging from 1323 K to 1473 K, and strain rates from 0.001 s-1 to 1 s-1. The results indicated... High temperature compressive deformation behaviors of as-cast Ti-43Al-4Nb-1.4W-0.6B alloy was investigated at temperatures ranging from 1323 K to 1473 K, and strain rates from 0.001 s-1 to 1 s-1. The results indicated that the true stress-true strain curves show a dynamic flow softening behavior. The flow curves after the friction and the temperature compensations were employed to develop constitutive equations. The effects of temperature and the strain rate on the deformation behavior were represented by Zener-Holloman exponential equation. The influence of strain was incorporated in the constitutive analysis by considering the effect of the strain on material constants by a five-order polynomial. A revised model was proposed to describe the relationships among the flow stress, strain rate and temperature and the predicted flow stress curves were in good agreement with experimental results. Appropriate deformation processing parameters were suggested based on the processing map which was constructed from friction and temperature corrected flow curves, determined as 1343 K, 0.02 s-1 and were successfully applied in the canned forging of billets to simulate industrial work condition. 展开更多
关键词 TiAl alloy flow stress hot deformation constitutive equation processing map
下载PDF
Hot deformation behavior of Al-9.0Mg-0.5Mn-0.1Ti alloy based on processing maps 被引量:7
18
作者 范才河 彭英彪 +2 位作者 阳海棠 周伟 严红革 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期289-297,共9页
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01... Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%. 展开更多
关键词 spray forming Al-9.0Mg-0.5Mn-0.1Ti alloy hot compressing deformation processing map dynamic recrystallization
下载PDF
Hot deformation behavior of as-quenched 7005 aluminum alloy 被引量:7
19
作者 王明亮 金培鹏 +1 位作者 王金辉 韩丽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2796-2804,共9页
The compressive deformation behavior of as-quenched 7005 aluminum alloy was investigated at the temperature ranging from 250 °C to 450 °C and strain rate ranging from 0.0005 s-1 to 0.5 s^-1 on Gleeble-1500 t... The compressive deformation behavior of as-quenched 7005 aluminum alloy was investigated at the temperature ranging from 250 °C to 450 °C and strain rate ranging from 0.0005 s-1 to 0.5 s^-1 on Gleeble-1500 thermal-simulation machine. Experimental results show that the flow stress of as-quenched 7005 alloy is affected by both deformation temperature and strain rate, which can be represented by a Zener-Hollomon parameter in an exponent-type equation. By comparing the calculated flow stress and the measured flow stress, the results show that the calculated flow stress agrees well with the experimental result. Based on a dynamic material model, the processing maps were constructed for the strains of 0.1, 0.3 and 0.5. The maps and microstructural examination revealed that the optimum hot working domain is 270-340 °C, 0.05-0.5 s^-1 with the reasonable dynamic recrystallization. The instability domain exhibits adiabatic shear bands and flow localization, which should be avoided during hot working in order to obtain satisfactory properties. 展开更多
关键词 7005 alloy hot compression deformation constitutive equation processing map
下载PDF
Rate controlling mechanisms in hot deformation of 7A55 aluminum alloy 被引量:4
20
作者 冯迪 张新明 +2 位作者 刘胜胆 吴泽政 谈琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期28-35,共8页
The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were es... The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 &#176;C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms. 展开更多
关键词 7A55 aluminum alloy processing maps hot deformation kinetic analysis dynamic recrystallization
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部