The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show tha...The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show that, the Fe_2Al_5 phase, on whose subcrystal boundaries, Al particles with the size of 7~30 μm existing on parallel linear are, grows a strong orientation. And the spread activation energy of Al is 155.22 kJ·mol -1. In addition, the effects of deformation on coating microstructure of hot-dip aluminum and the function of RE were preliminarily analyzed.展开更多
The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickne...The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickness of hot-dipped aluminizing layer by adding the appropriate content of rare-earth La is about 2~3 times as much as that without rare-earth La, and the microstructure of hot-dipped aluminizing layer has also greatly changed ,and a great deal of phase Fe3Al was precipitated along the boundary of α phase. The corrosion resistance of the hot-dipped layer with rare-earth is greatly increased.展开更多
The hot dipping process of pure aluminum on H13 steel substrates followed by plasma electrolytic oxidation(PEO) was studied to form alumina ceramic coatings for protective purpose.H13 steel bars were first dipped in p...The hot dipping process of pure aluminum on H13 steel substrates followed by plasma electrolytic oxidation(PEO) was studied to form alumina ceramic coatings for protective purpose.H13 steel bars were first dipped in pure aluminum melts,and then,a reactive iron-aluminum intermetallic layer grew at the interface between the melt and the steel substrate.The reactive layer was mainly composed of intermetallic Fe-Al(Fe_2Al_5);the thickness of aluminum layer and Fe-Al intermetallic layer were mainly influenced by dipping time(1.5~12.0 min) and dipping temperature(710~760 ℃).After PEO process,uniform Al_2O_3 ceramic coatings were deposited on the surface of aluminized steel.The element distribution,phase composition and morphology of the aluminized layer,and the ceramic coatings were characterized by SEM/EDS and XRD.The distribution of hardness across the composite coating is demonstrated,and the maximum value reaches 1864 HV.The thermal shock resistance of the coated sample is also well improved.展开更多
Titanium hexafluoride pretreatments are known to improve paint adhesion and function as a barrier between the coating and the hot dip galvanized (HDG) steel surface. Interactions at the zinc/pretreatment interface are...Titanium hexafluoride pretreatments are known to improve paint adhesion and function as a barrier between the coating and the hot dip galvanized (HDG) steel surface. Interactions at the zinc/pretreatment interface are of utmost importance for the formation of pretreatment layers and the corrosion resistance of color coated hot dip galvanized steels. Removal rate of inert aluminum oxide from HDG steel samples by chemical dissolution was studied. XPS measurements showed that the surface Al2O3 layer thickness decreased rapidly already at mild alkaline cleaning, while complete removal of Al required severe etching. Low reactivity of an Al2O3-rich surface was confirmed by impaired formation of a titanium hexafluoride pretreatment layer. Grain boundaries and deformation twinnings were shown to be of importance for the reactivity of the HDG surface and for the precipitation of the pretreatment chemical. Helium ion microscopy images and electron probe microanalysis (EPMA) of a pretreated sample showed accumulation of the pretreatment chemical at the grain boundaries. Al removal rate was fast at the deformation twinnings at the grain plateaus. Slow Al removal was observed at dendritic valleys and grain boundaries. The results increase understanding of the reactivity of hot dip galvanized steel surface.展开更多
Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some pr...Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some problems in the manufacring processes of hot-dip copper-coated aluminum wires, such as the difficulties in controlling coating process. In this work, the hot-dip copper-coating method of aluminum wires was investigated for producing copper-coated aluminum wire composites. The interface microstructure between the aluminum wire and the copper coating layer was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spec- trometry (EDS). Five different fluxing agents were tested. Experimental results show that appropriate conditions for the hot-dip process are determined as the liquid copper temperature of 1085℃ and the treatment time less than 1 s. A success in hot-dip copper-coated aluminum wires is achieved by hot-dipping a low-melting-point metal into a high-melting-point metal liquid, which is significant for the further devel- opment and application of copper-coated aluminum wire composites.展开更多
文摘The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show that, the Fe_2Al_5 phase, on whose subcrystal boundaries, Al particles with the size of 7~30 μm existing on parallel linear are, grows a strong orientation. And the spread activation energy of Al is 155.22 kJ·mol -1. In addition, the effects of deformation on coating microstructure of hot-dip aluminum and the function of RE were preliminarily analyzed.
文摘The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickness of hot-dipped aluminizing layer by adding the appropriate content of rare-earth La is about 2~3 times as much as that without rare-earth La, and the microstructure of hot-dipped aluminizing layer has also greatly changed ,and a great deal of phase Fe3Al was precipitated along the boundary of α phase. The corrosion resistance of the hot-dipped layer with rare-earth is greatly increased.
基金supported by Natural Science Foundation of Chongqing (No. 2008AA4029)Scientific Research Training Program of Chongqing University
文摘The hot dipping process of pure aluminum on H13 steel substrates followed by plasma electrolytic oxidation(PEO) was studied to form alumina ceramic coatings for protective purpose.H13 steel bars were first dipped in pure aluminum melts,and then,a reactive iron-aluminum intermetallic layer grew at the interface between the melt and the steel substrate.The reactive layer was mainly composed of intermetallic Fe-Al(Fe_2Al_5);the thickness of aluminum layer and Fe-Al intermetallic layer were mainly influenced by dipping time(1.5~12.0 min) and dipping temperature(710~760 ℃).After PEO process,uniform Al_2O_3 ceramic coatings were deposited on the surface of aluminized steel.The element distribution,phase composition and morphology of the aluminized layer,and the ceramic coatings were characterized by SEM/EDS and XRD.The distribution of hardness across the composite coating is demonstrated,and the maximum value reaches 1864 HV.The thermal shock resistance of the coated sample is also well improved.
文摘Titanium hexafluoride pretreatments are known to improve paint adhesion and function as a barrier between the coating and the hot dip galvanized (HDG) steel surface. Interactions at the zinc/pretreatment interface are of utmost importance for the formation of pretreatment layers and the corrosion resistance of color coated hot dip galvanized steels. Removal rate of inert aluminum oxide from HDG steel samples by chemical dissolution was studied. XPS measurements showed that the surface Al2O3 layer thickness decreased rapidly already at mild alkaline cleaning, while complete removal of Al required severe etching. Low reactivity of an Al2O3-rich surface was confirmed by impaired formation of a titanium hexafluoride pretreatment layer. Grain boundaries and deformation twinnings were shown to be of importance for the reactivity of the HDG surface and for the precipitation of the pretreatment chemical. Helium ion microscopy images and electron probe microanalysis (EPMA) of a pretreated sample showed accumulation of the pretreatment chemical at the grain boundaries. Al removal rate was fast at the deformation twinnings at the grain plateaus. Slow Al removal was observed at dendritic valleys and grain boundaries. The results increase understanding of the reactivity of hot dip galvanized steel surface.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20100006120020)
文摘Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some problems in the manufacring processes of hot-dip copper-coated aluminum wires, such as the difficulties in controlling coating process. In this work, the hot-dip copper-coating method of aluminum wires was investigated for producing copper-coated aluminum wire composites. The interface microstructure between the aluminum wire and the copper coating layer was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spec- trometry (EDS). Five different fluxing agents were tested. Experimental results show that appropriate conditions for the hot-dip process are determined as the liquid copper temperature of 1085℃ and the treatment time less than 1 s. A success in hot-dip copper-coated aluminum wires is achieved by hot-dipping a low-melting-point metal into a high-melting-point metal liquid, which is significant for the further devel- opment and application of copper-coated aluminum wire composites.