期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Friction Behaviors of the Hot Filament Chemical Vapor Deposition Diamond Film under Ambient Air and Water Lubricating Conditions 被引量:2
1
作者 SHEN Bin SUN Fanghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期658-664,共7页
The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi... The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process. 展开更多
关键词 hot filament chemical vapor deposition(HFCVD) diamond films friction behavior water lubricating
下载PDF
Characterization of atomic-layer MoS_2 synthesized using a hot filament chemical vapor deposition method 被引量:1
2
作者 彭英姿 宋扬 +3 位作者 解晓强 李源 钱正洪 白茹 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期423-428,共6页
Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron ... Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions. 展开更多
关键词 atomic-layer MoS2 hot filament chemical vapor deposition high-resolution transition electron microscopy(HRTEM) x-ray photoelectron spectroscopy(XPS)
下载PDF
<100> Textured Diamond Film on Silicon Grown by Hot Filament Chemical Vapor Deposition
3
作者 Xuanxiong ZHANG Tiansheng SHI and Xikang ZHANG (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy,Chinese Academy of Sciences, Shanghai, 200050, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期426-428,共3页
The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thic... The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained 展开更多
关键词 Textured Diamond Film on Silicon Grown by hot filament chemical vapor deposition OO
下载PDF
Simulation of Temperature Distribution in Hot Filament Chemical Vapor Deposition Diamond Films Growth on Si C Seals
4
作者 刘建锦 王亮 +2 位作者 张建国 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期541-547,共7页
In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence ... In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence of filament diameter, filament separation and rotational speed of the substrates is considered. Firstly,the simulation model is established by simplifying operating conditions to simulate the temperature and gas velocity distributions. Thereafter, the deposition parameters are optimized as 0.6 mm filament diameter, 18 mm filament separation and 5 r/min rotational speed to get the uniform temperature distribution. Under the influence of the rotational speed, the difference between temperature gradients along the directions perpendicular to the filament and parallel to the filament becomes narrow, it is consistent with the actual condition, and the maximum temperature difference on the substrates decreases to 7.4?C. Furthermore, the effect of the rotational speed on the gas velocity distribution is studied. Finally, diamond films are deposited on the end surfaces of Si C seals with the optimized deposition parameters. The characterizations by scanning electron microscopy(SEM) and Raman spectroscopy exhibit a layer of homogeneous diamond films with fine-faceted crystals and uniform thickness. The results validate the simulation model. 展开更多
关键词 finite volume method substrate temperature hot filament chemical vapor deposition(HFCVD) rotational speed velocity field distribution
原文传递
Preparation of Large-Scale Double-Side BDD Electrodes and Their Electrochemical Performances 被引量:1
5
作者 吴海兵 徐锋 +3 位作者 刘召志 周春 卢文壮 左敦稳 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期674-680,共7页
Boron doped diamond(BDD)performs well in electrochemical oxidation for organic pollutants thanks to its wide electrochemical window and superior chemical stability.We presented a method to obtain well-adherent large-s... Boron doped diamond(BDD)performs well in electrochemical oxidation for organic pollutants thanks to its wide electrochemical window and superior chemical stability.We presented a method to obtain well-adherent large-scale BDD/Nb electrode by the modified hot filament chemical vapor deposition system(HFCVD).SiC particles were sand blasted to enhance the adhesion of BDD coating.The BDD coating was then deposited on both sides of Nb which was placed vertically and closely with filament grids on both sides.The BDD/Nb electrodes had no deformation because the thermal deformations of the BDD films on both sides of the Nb substrate conteracted each other during cooling process after deposition.The surface morphology and purity of the BDD/Nb electrode were analyzed by Raman and scanning elestron microscope(SEM)techniques.Scratch test was used to investigate the adhesion of BDD films.The electrochemical performances were measured by cyclic voltammetry test.The BDD electrode at the B/C ratio of 2 000×10^(-6) held a higher oxygen evolution potential thanks to its high sp3 carbon content.Accelerated life test illustrated that the sandblasting pretreatment obviously enhanced the adhesion of BDD coating which resulted in a longer service duration than the un-sandblasted one. 展开更多
关键词 hot filament chemical vapor deposition(CVD) boron doped diamond large-scale double side elec-trode electrochemical performances
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部