Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ...Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes.展开更多
Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could ...Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.展开更多
Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ho...Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) are obtained at 20 min.展开更多
Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0....Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.展开更多
The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of ox...The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.展开更多
The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surf...The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.展开更多
In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on th...In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on the coiling temperature and position of the steel sample on the strip coil.At a relatively high coiling temperature,a large amount of internal oxidation was observed on the samples cut from the middle of the coil.The depth of the internal oxidation zone exceeded 10 μm and a thin iron layer covering the scale was observed in some cases.Pickling and cold-rolling experiments were conducted on selected samples.Scale pickling was found to be greatly delayed by the formation of an iron layer,which frequently resulted in under-pickled defects.In addition,pickling of the entire internal oxidation zone was difficult,except at the grain boundaries,where the degree of internal Si and Mn oxidation was enriched.The surface of the cold-rolled steel sheet was ruined by the remaining oxidation zone in the subsurface of the pickled steel.The internal oxidation of hot-rolled ultra-high strength steel must be precisely controlled to improve the subsequent surface quality of cold-rolled steel.展开更多
A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER...A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER) exceeding 980 MPa, 10%,and 30%,respectively.The 90° V-type bending perpendicular to the rolling direction can satisfy the R/t=1.0 requirement, indicating excellent bendability.Systematic evaluations of industrial trial-produced 980 MPa hot-rolled AHSS have been conducted, including microstructure, tensile properties in three directions, HER,bendability, fatigue limit strength, and forming limit.The microstructure of the newly developed 980 MPa AHSS primarily consists of fine bainite and a small amount of martensite-austenite constituent.The practical yield and tensile strength are higher than 800 and 980 MPa, respectively, with typical elongation of 13% and HER of around 40%.The good combination of the newly developed 980 MPa AHSS is primarily attributed to the fine bainitic microstructure, resulting in excellent flangeability and bendability.In addition, the newly developed 980 MPa AHSS has good fatigue and forming properties, making it suitable for the production of chassis and suspension components.展开更多
Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total p...Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total pro- duction cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent pro- gram based on artificial neural network (ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip, SPHC. A neural network model was developed by using 7 x 5 x 1 back-propagation (BP) neural network structure to determine the multiple relationships among chemical composition, product pro- cess and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products' tensile strength was accurately pre- dicted within an error margin of ~ 10 %, compared to measured values. Based on the model, the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each in- put parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to sub- stitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.展开更多
Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium ...Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which t...Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.展开更多
Macroscopic texture and microscopic orientation in hot-rolled and annealed sheets of nonoriented electrical steel were studied by XRD and EBSD techniques. The microstructure of hot-rolled and annealed samples was stud...Macroscopic texture and microscopic orientation in hot-rolled and annealed sheets of nonoriented electrical steel were studied by XRD and EBSD techniques. The microstructure of hot-rolled and annealed samples was studied by OM. Experimental results indicate that a strong heredity is observed in texture evolution between hot-rolled texture and annealed texture. Typical elements have a large effect on the recrystallization microstructure and texture distribution. The texture distribution through thickness is highly affected by recrystallization in hot rolled sheets. The recrystallization is boosted by Si and Al. Goss grains originate from cracked initial 〈100〉 columnar grains. {110}〈112〉, {112}〈111〉 and {111}〈112〉 grains are related to Goss grains. In subsurface lay of hot rolled sheets, Al can strengthen Goss texture and weaken copper-type texture. {112}〈111〉 texture and {110}〈112〉 texture are strengthened by Si. In the central layers, {100}〈001〉 texture and {111}〈121〉 texture are weakened by Al. {100}〈011〉 texture is increased by Al. Si can increase the proportion of γ-fiber texture and decrease that of {100}〈011〉 texture. In annealed texture, {100}〈001〉 texture and Goss texture are decreased by Al and Si. γ-fiber texture is increased by Si and {111}〈121〉 texture is preferentially increased by Al. The recrystallized grain size is increased and iron loss of annealed sheets is reduced by Al and Si, which means that the magnetic properties are optimized by the Al and Si content.展开更多
The composition and production technology of the type of hot-rolled steel plate used in two-sided enameling were briefly described. The microstructure and mechanical properties before and after enameling were contrast...The composition and production technology of the type of hot-rolled steel plate used in two-sided enameling were briefly described. The microstructure and mechanical properties before and after enameling were contrastively investigated,and the precipitates in the samples were analyzed using transmission electron microscope and energy dispersive spectrometer. The results show the ferrite grain size of the steel plate after high-temperature enamel firing to be fine,with a large number of TiC and Ti;C;S;precipitates dispersed throughout the ferrite matrix. After two rounds of enamel firing at a temperature range of 800-890 ℃,its yield strength can still reach342 MPa. The results of a hydrogen permeation test show that the hydrogen storage properties of the steel plate are much better than those of ordinary structural carbon steel. A better bubble structure in the enamel layer can be obtained by this steel plate,with no fish-scale defects on the enameled steel-plate surface.展开更多
The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decompositi...The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.展开更多
Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-micro...Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.展开更多
The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basi...The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.展开更多
Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperat...Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.展开更多
The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling ...The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.50334010)The author(Zhuang LI)also acknowledges the support of the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes.
基金supported by the National Natural Science Foundation of China(No.50334010)the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.
基金Project (No. 50334010) supported by the National Natural ScienceFoundation of China
文摘Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) are obtained at 20 min.
基金Funded by the National Natural Science Foundation of China(NSFC)(No.51274154)
文摘Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.
基金supported by the National Natural Science Foundation of China(No.51222106)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金the Major State Basic Research Development Program of China(No.2014CB643300)the Beijing Municipal Commission of Education
文摘The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.
文摘The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.
文摘In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on the coiling temperature and position of the steel sample on the strip coil.At a relatively high coiling temperature,a large amount of internal oxidation was observed on the samples cut from the middle of the coil.The depth of the internal oxidation zone exceeded 10 μm and a thin iron layer covering the scale was observed in some cases.Pickling and cold-rolling experiments were conducted on selected samples.Scale pickling was found to be greatly delayed by the formation of an iron layer,which frequently resulted in under-pickled defects.In addition,pickling of the entire internal oxidation zone was difficult,except at the grain boundaries,where the degree of internal Si and Mn oxidation was enriched.The surface of the cold-rolled steel sheet was ruined by the remaining oxidation zone in the subsurface of the pickled steel.The internal oxidation of hot-rolled ultra-high strength steel must be precisely controlled to improve the subsequent surface quality of cold-rolled steel.
文摘A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER) exceeding 980 MPa, 10%,and 30%,respectively.The 90° V-type bending perpendicular to the rolling direction can satisfy the R/t=1.0 requirement, indicating excellent bendability.Systematic evaluations of industrial trial-produced 980 MPa hot-rolled AHSS have been conducted, including microstructure, tensile properties in three directions, HER,bendability, fatigue limit strength, and forming limit.The microstructure of the newly developed 980 MPa AHSS primarily consists of fine bainite and a small amount of martensite-austenite constituent.The practical yield and tensile strength are higher than 800 and 980 MPa, respectively, with typical elongation of 13% and HER of around 40%.The good combination of the newly developed 980 MPa AHSS is primarily attributed to the fine bainitic microstructure, resulting in excellent flangeability and bendability.In addition, the newly developed 980 MPa AHSS has good fatigue and forming properties, making it suitable for the production of chassis and suspension components.
文摘Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total pro- duction cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent pro- gram based on artificial neural network (ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip, SPHC. A neural network model was developed by using 7 x 5 x 1 back-propagation (BP) neural network structure to determine the multiple relationships among chemical composition, product pro- cess and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products' tensile strength was accurately pre- dicted within an error margin of ~ 10 %, compared to measured values. Based on the model, the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each in- put parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to sub- stitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.
文摘Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
基金the National Natural Science Foundation of China(No.50334010)the Program of Education Branch of Liaoning Province of China(No.2006B075)
文摘Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.
基金Funded by the Fundamental Research Funds for the Central Universities(TP-A3)(No.:FRF-TP-15-063A3)
文摘Macroscopic texture and microscopic orientation in hot-rolled and annealed sheets of nonoriented electrical steel were studied by XRD and EBSD techniques. The microstructure of hot-rolled and annealed samples was studied by OM. Experimental results indicate that a strong heredity is observed in texture evolution between hot-rolled texture and annealed texture. Typical elements have a large effect on the recrystallization microstructure and texture distribution. The texture distribution through thickness is highly affected by recrystallization in hot rolled sheets. The recrystallization is boosted by Si and Al. Goss grains originate from cracked initial 〈100〉 columnar grains. {110}〈112〉, {112}〈111〉 and {111}〈112〉 grains are related to Goss grains. In subsurface lay of hot rolled sheets, Al can strengthen Goss texture and weaken copper-type texture. {112}〈111〉 texture and {110}〈112〉 texture are strengthened by Si. In the central layers, {100}〈001〉 texture and {111}〈121〉 texture are weakened by Al. {100}〈011〉 texture is increased by Al. Si can increase the proportion of γ-fiber texture and decrease that of {100}〈011〉 texture. In annealed texture, {100}〈001〉 texture and Goss texture are decreased by Al and Si. γ-fiber texture is increased by Si and {111}〈121〉 texture is preferentially increased by Al. The recrystallized grain size is increased and iron loss of annealed sheets is reduced by Al and Si, which means that the magnetic properties are optimized by the Al and Si content.
文摘The composition and production technology of the type of hot-rolled steel plate used in two-sided enameling were briefly described. The microstructure and mechanical properties before and after enameling were contrastively investigated,and the precipitates in the samples were analyzed using transmission electron microscope and energy dispersive spectrometer. The results show the ferrite grain size of the steel plate after high-temperature enamel firing to be fine,with a large number of TiC and Ti;C;S;precipitates dispersed throughout the ferrite matrix. After two rounds of enamel firing at a temperature range of 800-890 ℃,its yield strength can still reach342 MPa. The results of a hydrogen permeation test show that the hydrogen storage properties of the steel plate are much better than those of ordinary structural carbon steel. A better bubble structure in the enamel layer can be obtained by this steel plate,with no fish-scale defects on the enameled steel-plate surface.
文摘The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.
文摘Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.
文摘The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.
基金supported by the Key Research Foundation of Baoshan Iron & Steel Co.,Ltd.(No.D06EBEA207)
文摘Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.
文摘The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.