Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate.In this paper,microwave heating was used to improve the acid leaching,and the mechanism was investigated via microscop...Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate.In this paper,microwave heating was used to improve the acid leaching,and the mechanism was investigated via microscopic morphology analysis and numerical simulation by COMSOL Multiphysics software.The effects of the microwave power,leaching temperature,CaF_(2) dosage,H_(2)SO_(4) concentration,and leaching time on the vanadium recovery were investigated.A vanadium recovery of 80.66%is obtained at a microwave power of 550 W,leaching temperature of 95℃,CaF_(2) dosage of 5wt%,H_(2)SO_(4) concentration of 20vol%,and leaching time of 2.5 h.Compared with conventional leaching technology,the vanadium recovery increases by 6.18%,and the leaching time shortens by 79.17%.More obvious pulverization of shale particles and delamination of mica minerals happen in the microwave-assisted leaching process.Numerical simulation results show that the temperature of vanadium shales increases with an increase in electric field(E-field).The distributions of E-field and temperature among vanadium shale particles are relatively uniform,except for the higher content at the contact position of the particles.The analysis results of scaleup experiments and leaching experiments indicate high-temperature hot spots in the process of microwave-assisted leaching,and the local high temperature destroys the mineral structure and accelerates the reaction rate.展开更多
Cereal crops, including wheat, barley, oats, rye, etc., are the major sources of calories and proteins for most of the people in the world as well as in China. Cereal rusts and powdery mildews are very important disea...Cereal crops, including wheat, barley, oats, rye, etc., are the major sources of calories and proteins for most of the people in the world as well as in China. Cereal rusts and powdery mildews are very important diseases occurred on the cereal crops, which caused yield losses at 5-10% in general and even more than 30% while severe epidemics occurred. In recent years, with the global climate change, change of cultivation system and evolution of the pathogens, the world is facing great challenges caused by cereal diseases.展开更多
In this paper, using spectral decimation, we prove that the "hot spots" conjecture holds on a class of homogeneous hierarchical gaskets introduced by Hambly,i.e., every eigenfunction of the second-smallest e...In this paper, using spectral decimation, we prove that the "hot spots" conjecture holds on a class of homogeneous hierarchical gaskets introduced by Hambly,i.e., every eigenfunction of the second-smallest eigenvalue of the Neumann Laplacian(introduced by Kigami) attains its maximum and minimum on the boundary.展开更多
The 2017 International Bovine Mastitis Conference & The National Mastitis Council Regional in China was successfully held in Beijing on August 25-27, 2017. Nearly 650 participants from more than eight countries (reg...The 2017 International Bovine Mastitis Conference & The National Mastitis Council Regional in China was successfully held in Beijing on August 25-27, 2017. Nearly 650 participants from more than eight countries (regions) and international organizations attended this conference. The conference provided an communication platform for international counterparts, and the content was closely related to all aspects of dairy cow health, including dairy mastitis pathogens, diagnose, therapeutics, management, residue, bacterial resistance and milk safety. Here we are pleased to have the opportunity to organize a special focus and provide the most updated knowledge of the given topics.展开更多
Mankind has entered the 21st century of high speed development in science and e-conomics. Owing to the alteration of disease modes in the new century, the greatly elevated quality of human life and the arrival of aged...Mankind has entered the 21st century of high speed development in science and e-conomics. Owing to the alteration of disease modes in the new century, the greatly elevated quality of human life and the arrival of aged society, the modes of medicine have obviously changed from the treatment mode展开更多
With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°...With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean.This research aims to identify the spatial hot and cold spots(i.e.spatial clusters) of O.bartramii to reveal its spatial structure using commercial fishery data from2007 to 2010 collected by Chinese mainland squid-j igging fleets.A relatively strongly-clustered distribution for O.bartramii was observed using an exploratory spatial data analysis(ESDA) method.The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from2008 to 2010.The hot and cold spots in 2007 occupied 8.2%and 5.6%of the study area,respectively;these percentages for hot and cold spot areas were 5.8%and 3.1%in 2008,10.2%and 2.9%in 2009,and 16.4%and 11.9%in 2010,respectively.Nearly half(>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8%in 2010,indicating that the hot spot areas are central fishing grounds.A further change analysis shows the area centered at156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010.Furthermore,the hot spots were mainly identified in areas with sea surface temperature(SST) in the range of 15-20℃ around warm Kuroshio Currents as well as with the chlorophyll-a(chl-a) concentration above 0.3 mg/m^3.The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O.bartramii and is useful for sustainable exploitation,assessment,and management of this squid.展开更多
China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much...China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much higher impacts on the water cycle process in this region than extreme temperature and precipitation events with short durations but high intensities.Parametric and nonparametric trend analysis methods widely used in climatology and hydrology are employed to identify the temporal and spatial features of the changes in the consecutive cold,warm,dry and wet days in the NAR based on China’s 0.5°×0.5°meteorological grid datasets of daily temperature and precipitation from 1961 to 2018.This study found that(1)the consecutive cold days(Cold Spell Duration Indicator,CSDI),and the consecutive dry days(CDD)decreased,while the consecutive warm days(Warm Spell Duration Indicator,WSDI),and the consecutive wet days(CWD)increased from 1961 to 2018,(2)and the eastern Kunlun Mountains were the hot spots where all of these consecutive climate indices changed significantly,(3)and the changes in these consecutive climate indices were highly correlated with the rise in the Global Mean Land/Ocean Temperature Index.The results indicated that winters tended to warmer and dryer and summer became hotter and wetter during 1961–2018 in the NAR under the global warming,which can lead to the sustained glacier retreat and the increase in summer runoff in this region,and the eastern Kunlun Mountains are the area where could face high risks of water scarcity and floods if the changes in these climate indices continue in the future.Given the vulnerability of the socio-economic systems in the NAR to a water shortage and floods,it is most crucial to improve the strategies of water resources management,disaster prevention and risk management for this region under climate change.展开更多
BACKGROUND Colorectal cancer(CRC)is the third most common cancer worldwide and the second leading cause of cancer-related death.Over the past two decades,numerous researchers have provided important evidence regarding...BACKGROUND Colorectal cancer(CRC)is the third most common cancer worldwide and the second leading cause of cancer-related death.Over the past two decades,numerous researchers have provided important evidence regarding the role of tight junction(TJ)proteins in the occurrence and progression of CRC.The causal relationship between the presence of specific TJ proteins and the development of CRC has also been confirmed.Despite the large number of publications in this field,a bibliometric study to review the current state of research and highlight the research trends and hotspots in this field has not yet been performed.AIM To analyze research on TJs and CRC,summarize the field’s history and current status,and predict future research directions.METHODS We searched the Science Citation Index Expanded database for all literature on CRC and TJs from 2001-2023.We used bibliometrics to analyze the data of these papers,such as the authors,countries,institutions,and references.Co-authorship,co-citation,and co-occurrence analyses were the main methods of analysis.CiteSpace and VOSviewer were used to visualize the results.RESULTS A total of 205 studies were ultimately identified.The number of publications on this topic has steadily increased since 2007.China and the United States have made the largest contributions to this field.Anticancer Research was the most prolific journal,publishing 8 articles,while the journal Oncogene had the highest average citation rate(68.33).Professor Dhawan P was the most prolific and cited author in this field.Co-occurrence analysis of keywords revealed that“tight junction protein expression”,“colorectal cancer”,“intestinal microbiota”,and“inflammatory bowel disease”had the highest frequency of occurrence,revealing the research hotspots and trends in this field.CONCLUSION This bibliometric analysis evaluated the scope and trends of TJ proteins in CRC,providing valuable research perspectives and future directions for studying the connection between the two.It is recommended to focus on emerging research hotspots,such as the correlations among intestinal microbiota,inflammatory bowel disease,TJ protein expression,and CRC.展开更多
Magnesia-calcia refractories are widely used in the production process of clean steel due to their excellent high-tem-perature stability,slag resistance and ability to purify molten steel.However,there are still probl...Magnesia-calcia refractories are widely used in the production process of clean steel due to their excellent high-tem-perature stability,slag resistance and ability to purify molten steel.However,there are still problems such as difficult sintering and easy hydration.Magnesia-calcia materials with various calcium oxide contents were prepared by using induction sintering,and the sintering property combined with the hydration resistance of the materials was investigated.The experimental results showed that the magnesia-calcia materials prepared under induction field had higher density,microhardness and hydration resistance.In particular,the relative density of induction sintered magnesia-calcia materials with 50 mo1%CaO was greater than 98%,and the average grain size of CaO was 4.56μm,which was much larger than that of traditional sintered materials.In order to clarify the densification and microstructure evolution mechanism of the magnesia-calcia materials,the changes in temperature and magnetic field throughout the sintering process were analyzed by using finite element simulation.The results showed that the larger heating rate and higher sintering temperature under the induction sintering mode were beneficial to the rapid densification.In addition,the hot spots generated within the material due to the difference in high-temperature electric conductivity between MgO and CaO were the critical factor to realize selective sintering in MgO-CaO system,which provides a novel pathway to solve the problem of difficult sintering and control the microstructure of high-temperature composite material used in the field of high-purity steel smelting.展开更多
Perovskite solar cells(PSCs)are attracting much attention and are on the way to commercialization.However,some modules are subject to reverse bias in actual fields,so it is meaningful to investigate the reverse-bias b...Perovskite solar cells(PSCs)are attracting much attention and are on the way to commercialization.However,some modules are subject to reverse bias in actual fields,so it is meaningful to investigate the reverse-bias behav-ior of PSCs.Herein,an in-situ temperature and current measurement technique was developed.Intriguingly,some hot spots were observed and then quickly disappeared in the reverse biased PSCs,along with the simultaneous increase in the current and local temperature.Also,the potential mechanism has been revealed and analyzed.An abnormal bulge in the perovskite film was found at the hot spot.Accordingly,the appearance and disappearance of hot spots were perfectly explained by band bending and tunneling current caused by ion accumulation.Addi-tionally,statistical analysis suggested that sparkling hot spots were related to reverse voltage and efficiencies of PSCs.The research provides a great significance for the study of PSCs under reverse bias.展开更多
Regulating the surface plasmon resonance(SPR)of metallic nanostructures is of great interests for optical and catalytic applications,however,it is still a great challenge for tuning SPR features of small metallic nano...Regulating the surface plasmon resonance(SPR)of metallic nanostructures is of great interests for optical and catalytic applications,however,it is still a great challenge for tuning SPR features of small metallic nanoparticles(<10 nm).In this work,we design a unique dielectric support-urchin-like mesoporous silica nanoparticles(U-SiO_(2))with ordered long spikes on its surface,which can well enhance the SPR properties of~3 nm gold nanocrystals(AuNCs).The U-SiO_(2)not only realizes the uniform self-assembly of AuNCs,but also prevents their aggregation due to the unique confinement effect.The finite-difference time-domain simulations show that the AuNCs on U-SiO_(2)can generate plasmonic hot spots with highly enhanced electromagnetic field.Moreover,the hot electrons can be effectively and rapidly transferred through the interface junction to TiO_(2).Thus,a high visible-light-driven photocatalytic activity can be observed,which is 3.8 times higher than that of smooth photocatalysts.The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.展开更多
In this paper, we define a class of domains in R^n. Using the synchronous coupling of reflecting Brownian motion, we obtain the monotonicity property of the solution of the heat equation with the Neumann boundary cond...In this paper, we define a class of domains in R^n. Using the synchronous coupling of reflecting Brownian motion, we obtain the monotonicity property of the solution of the heat equation with the Neumann boundary conditions. We then show that the hot spots conjecture holds for this class of domains.展开更多
Indications exist that mobile phones may cause non-specific biological effects. They are classified as being of implausible non-thermal nature due to low quantum energy and low specific absorption rate levels, even if...Indications exist that mobile phones may cause non-specific biological effects. They are classified as being of implausible non-thermal nature due to low quantum energy and low specific absorption rate levels, even if considering worst cases of "hot spots" of only millimeter size. The considerations of this paper demonstrate that classical theory of polarization offers a conventional interpretation for all three the existence of so far unclarified effects, their low reproducibility and their low intensity. The basis of this explanation is given by the assumption that hot spots contain even hotter “nano spots” on a molecular level according to well known mechanisms of γ-relaxation. In this paper, the concept is put for discussion assuming a heterogeneous system that consists of water molecules as well as larger-sized functional molecules. A consistent interpretation through temperature increase on the level of nanometer sized molecular compounds promises to favor interdisciplinary discussions with respect to safety regulations.展开更多
Since the"Thirteenth Five-Year Plan"period,Chinese scholars'research on academic economics has mainly focused on"winning the battle against poverty in education,""developing modern vocatio...Since the"Thirteenth Five-Year Plan"period,Chinese scholars'research on academic economics has mainly focused on"winning the battle against poverty in education,""developing modern vocational education,""promoting educational structural reform,"and"achieving the equalization of basic public education services."Analysis on themes such as"Humanization."展开更多
Law enforcement agencies have begun utilizing traffic and crash data to improve traffic law enforcement delivery. However, many agencies often do not have the resources or expertise to harness fully the benefits this ...Law enforcement agencies have begun utilizing traffic and crash data to improve traffic law enforcement delivery. However, many agencies often do not have the resources or expertise to harness fully the benefits this data offers. A free to use, scalable traffic crash hot spot detection tool was developed to aid law enforcement agency decision makers, statewide to the local municipality level. The tool was developed to identify crash hot spots algorithmically with </span><span style="font-family:Verdana;">a range of customizable parameters based on location, date and time, and</span><span style="font-family:Verdana;"> crash factors, enabling quick, dynamic queries. These capabilities provide the ability for law enforcement agencies to conduct “what if” analyses and make data-driven allocation decisions, placing officer resources where they are most needed. The two-step algorithm first identifies potential hot spots based on </span><span style="font-family:Verdana;">crash density and then ranks each hot spot using a standardized z-score </span><span style="font-family:Verdana;">measure of relative significance. To test the viability of the tool, a pilot was conducted identifying 27 hot spots across Wisconsin where targeted enforcement was then deployed. Despite officer skepticism, results from the pilot found officers at sites targeted for speeding and seatbelt violations were nearly twice as likely to initiate traffic stops compared to non-targeted hot spots. Empirical Bayes before-and-after crash analyses found fatal and injury crashes reduced significantly by nearly 11% during the months with targeted enforcement, while property damage crashes and total crashes were unchanged. Overall, the results show the algorithm can identify hotspots where, coupled with targeted enforcement, traffic safety improvements can be made.展开更多
The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of...The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved.展开更多
This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embed...This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.展开更多
The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopo...The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.展开更多
Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The pro...Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The proposed mathematical model can be employed to indicate both the positionand size of the hot spot at fire-facing wall of heated tube of combustion chamber, and is characteristicof simplicity and efficiency If coupled with thermoelectric couple or infrared viewer, the presentedlocation method of combustion hot spot can offer engineers very valuable proposal to keep furnacerunning more safely The same is true for any other type of tubular furnaces.展开更多
The great gorge of Yarlung Zangbo river is a hot\|spot over earth has been proved by the gravity, geomagnetic, geological, geothermal heat and atmospheric data. Some substances often surge from mantle to the earth sur...The great gorge of Yarlung Zangbo river is a hot\|spot over earth has been proved by the gravity, geomagnetic, geological, geothermal heat and atmospheric data. Some substances often surge from mantle to the earth surface, which process is not constant and has obvious pulse, characterized by ground temperature over hot\|spot region where is a apparent positive relation in correlation map of the variations of Zedang’s temperature (at 3 2m) in stations over China from 1965 to 1992. It can bring more precipitation here. Out of from the hot spot, there are positive and negative axes around the hot\|spot and to arrange in circular waves with same distance. The average distant of the axes is about 820km, which prove the pulse propagation would infect the distribution of summer precipitation in China. In the hot\|spot region, the geothermal heat pulse propagation has preference direction. So, it has obvious contribution for summer precipitation in South Ch ina.展开更多
基金supported by the National Natural Science Foundation of China(No.51904211)the National Natural Science Foundation of China(No.52004187)。
文摘Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate.In this paper,microwave heating was used to improve the acid leaching,and the mechanism was investigated via microscopic morphology analysis and numerical simulation by COMSOL Multiphysics software.The effects of the microwave power,leaching temperature,CaF_(2) dosage,H_(2)SO_(4) concentration,and leaching time on the vanadium recovery were investigated.A vanadium recovery of 80.66%is obtained at a microwave power of 550 W,leaching temperature of 95℃,CaF_(2) dosage of 5wt%,H_(2)SO_(4) concentration of 20vol%,and leaching time of 2.5 h.Compared with conventional leaching technology,the vanadium recovery increases by 6.18%,and the leaching time shortens by 79.17%.More obvious pulverization of shale particles and delamination of mica minerals happen in the microwave-assisted leaching process.Numerical simulation results show that the temperature of vanadium shales increases with an increase in electric field(E-field).The distributions of E-field and temperature among vanadium shale particles are relatively uniform,except for the higher content at the contact position of the particles.The analysis results of scaleup experiments and leaching experiments indicate high-temperature hot spots in the process of microwave-assisted leaching,and the local high temperature destroys the mineral structure and accelerates the reaction rate.
文摘Cereal crops, including wheat, barley, oats, rye, etc., are the major sources of calories and proteins for most of the people in the world as well as in China. Cereal rusts and powdery mildews are very important diseases occurred on the cereal crops, which caused yield losses at 5-10% in general and even more than 30% while severe epidemics occurred. In recent years, with the global climate change, change of cultivation system and evolution of the pathogens, the world is facing great challenges caused by cereal diseases.
基金supported in part by NSFC grants Nos.11271327, 11771391
文摘In this paper, using spectral decimation, we prove that the "hot spots" conjecture holds on a class of homogeneous hierarchical gaskets introduced by Hambly,i.e., every eigenfunction of the second-smallest eigenvalue of the Neumann Laplacian(introduced by Kigami) attains its maximum and minimum on the boundary.
文摘The 2017 International Bovine Mastitis Conference & The National Mastitis Council Regional in China was successfully held in Beijing on August 25-27, 2017. Nearly 650 participants from more than eight countries (regions) and international organizations attended this conference. The conference provided an communication platform for international counterparts, and the content was closely related to all aspects of dairy cow health, including dairy mastitis pathogens, diagnose, therapeutics, management, residue, bacterial resistance and milk safety. Here we are pleased to have the opportunity to organize a special focus and provide the most updated knowledge of the given topics.
文摘Mankind has entered the 21st century of high speed development in science and e-conomics. Owing to the alteration of disease modes in the new century, the greatly elevated quality of human life and the arrival of aged society, the modes of medicine have obviously changed from the treatment mode
基金Supported by the National Natural Science Foundation of China(Nos.41406146,41476129)the Natural Science Foundation of Shanghai Municipality(No.13ZR1419300)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20123104120002)the Shanghai Universities First-Class Disciplines Project-Fisheries(A)
文摘With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean.This research aims to identify the spatial hot and cold spots(i.e.spatial clusters) of O.bartramii to reveal its spatial structure using commercial fishery data from2007 to 2010 collected by Chinese mainland squid-j igging fleets.A relatively strongly-clustered distribution for O.bartramii was observed using an exploratory spatial data analysis(ESDA) method.The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from2008 to 2010.The hot and cold spots in 2007 occupied 8.2%and 5.6%of the study area,respectively;these percentages for hot and cold spot areas were 5.8%and 3.1%in 2008,10.2%and 2.9%in 2009,and 16.4%and 11.9%in 2010,respectively.Nearly half(>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8%in 2010,indicating that the hot spot areas are central fishing grounds.A further change analysis shows the area centered at156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010.Furthermore,the hot spots were mainly identified in areas with sea surface temperature(SST) in the range of 15-20℃ around warm Kuroshio Currents as well as with the chlorophyll-a(chl-a) concentration above 0.3 mg/m^3.The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O.bartramii and is useful for sustainable exploitation,assessment,and management of this squid.
基金the Ministry of Science and Technology(Grant No.2018FY100502)the Young Talent Growth Fund Project of Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences(Grant No.FEYS2019016)+2 种基金the National Natural Science Foundation of China(Grant No.41171378)the“Western Light”program of the Chinese Academy of Science(Grant No.2017-XBQNXZ-B-016)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019430)。
文摘China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much higher impacts on the water cycle process in this region than extreme temperature and precipitation events with short durations but high intensities.Parametric and nonparametric trend analysis methods widely used in climatology and hydrology are employed to identify the temporal and spatial features of the changes in the consecutive cold,warm,dry and wet days in the NAR based on China’s 0.5°×0.5°meteorological grid datasets of daily temperature and precipitation from 1961 to 2018.This study found that(1)the consecutive cold days(Cold Spell Duration Indicator,CSDI),and the consecutive dry days(CDD)decreased,while the consecutive warm days(Warm Spell Duration Indicator,WSDI),and the consecutive wet days(CWD)increased from 1961 to 2018,(2)and the eastern Kunlun Mountains were the hot spots where all of these consecutive climate indices changed significantly,(3)and the changes in these consecutive climate indices were highly correlated with the rise in the Global Mean Land/Ocean Temperature Index.The results indicated that winters tended to warmer and dryer and summer became hotter and wetter during 1961–2018 in the NAR under the global warming,which can lead to the sustained glacier retreat and the increase in summer runoff in this region,and the eastern Kunlun Mountains are the area where could face high risks of water scarcity and floods if the changes in these climate indices continue in the future.Given the vulnerability of the socio-economic systems in the NAR to a water shortage and floods,it is most crucial to improve the strategies of water resources management,disaster prevention and risk management for this region under climate change.
基金Supported by the National Natural Science Foundation of China,No.82170525Beijing Shijitan Hospital Professionals Training Program,No.2023 LJRCDL.
文摘BACKGROUND Colorectal cancer(CRC)is the third most common cancer worldwide and the second leading cause of cancer-related death.Over the past two decades,numerous researchers have provided important evidence regarding the role of tight junction(TJ)proteins in the occurrence and progression of CRC.The causal relationship between the presence of specific TJ proteins and the development of CRC has also been confirmed.Despite the large number of publications in this field,a bibliometric study to review the current state of research and highlight the research trends and hotspots in this field has not yet been performed.AIM To analyze research on TJs and CRC,summarize the field’s history and current status,and predict future research directions.METHODS We searched the Science Citation Index Expanded database for all literature on CRC and TJs from 2001-2023.We used bibliometrics to analyze the data of these papers,such as the authors,countries,institutions,and references.Co-authorship,co-citation,and co-occurrence analyses were the main methods of analysis.CiteSpace and VOSviewer were used to visualize the results.RESULTS A total of 205 studies were ultimately identified.The number of publications on this topic has steadily increased since 2007.China and the United States have made the largest contributions to this field.Anticancer Research was the most prolific journal,publishing 8 articles,while the journal Oncogene had the highest average citation rate(68.33).Professor Dhawan P was the most prolific and cited author in this field.Co-occurrence analysis of keywords revealed that“tight junction protein expression”,“colorectal cancer”,“intestinal microbiota”,and“inflammatory bowel disease”had the highest frequency of occurrence,revealing the research hotspots and trends in this field.CONCLUSION This bibliometric analysis evaluated the scope and trends of TJ proteins in CRC,providing valuable research perspectives and future directions for studying the connection between the two.It is recommended to focus on emerging research hotspots,such as the correlations among intestinal microbiota,inflammatory bowel disease,TJ protein expression,and CRC.
基金The authors would like to express the gratitude for the financial support from the National Natural Science Foundation of China(U20A20239).
文摘Magnesia-calcia refractories are widely used in the production process of clean steel due to their excellent high-tem-perature stability,slag resistance and ability to purify molten steel.However,there are still problems such as difficult sintering and easy hydration.Magnesia-calcia materials with various calcium oxide contents were prepared by using induction sintering,and the sintering property combined with the hydration resistance of the materials was investigated.The experimental results showed that the magnesia-calcia materials prepared under induction field had higher density,microhardness and hydration resistance.In particular,the relative density of induction sintered magnesia-calcia materials with 50 mo1%CaO was greater than 98%,and the average grain size of CaO was 4.56μm,which was much larger than that of traditional sintered materials.In order to clarify the densification and microstructure evolution mechanism of the magnesia-calcia materials,the changes in temperature and magnetic field throughout the sintering process were analyzed by using finite element simulation.The results showed that the larger heating rate and higher sintering temperature under the induction sintering mode were beneficial to the rapid densification.In addition,the hot spots generated within the material due to the difference in high-temperature electric conductivity between MgO and CaO were the critical factor to realize selective sintering in MgO-CaO system,which provides a novel pathway to solve the problem of difficult sintering and control the microstructure of high-temperature composite material used in the field of high-purity steel smelting.
基金This work was supported by the National Natural Science Founda-tion of China(11875229,61505264 and 52173192)the National Key Research and Development Program of China(2017YFA0206600)+1 种基金the Science and Technology Innovation Program of Hunan Province(No.2020RC4004)the Special Funding for the Construction of Innova-tive Provinces in Hunan Province(No.2020GK2024).
文摘Perovskite solar cells(PSCs)are attracting much attention and are on the way to commercialization.However,some modules are subject to reverse bias in actual fields,so it is meaningful to investigate the reverse-bias behav-ior of PSCs.Herein,an in-situ temperature and current measurement technique was developed.Intriguingly,some hot spots were observed and then quickly disappeared in the reverse biased PSCs,along with the simultaneous increase in the current and local temperature.Also,the potential mechanism has been revealed and analyzed.An abnormal bulge in the perovskite film was found at the hot spot.Accordingly,the appearance and disappearance of hot spots were perfectly explained by band bending and tunneling current caused by ion accumulation.Addi-tionally,statistical analysis suggested that sparkling hot spots were related to reverse voltage and efficiencies of PSCs.The research provides a great significance for the study of PSCs under reverse bias.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFE0201701)the National Natural Science Foundation of China(Nos.21975050,21905052,11975081,and 22105041)+3 种基金Science and Technology Commission of Shanghai Municipality(No.21ZR1408800)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.19JC1410700)the Program of Shanghai Academic Research Leader(No.21XD1420800)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010108).
文摘Regulating the surface plasmon resonance(SPR)of metallic nanostructures is of great interests for optical and catalytic applications,however,it is still a great challenge for tuning SPR features of small metallic nanoparticles(<10 nm).In this work,we design a unique dielectric support-urchin-like mesoporous silica nanoparticles(U-SiO_(2))with ordered long spikes on its surface,which can well enhance the SPR properties of~3 nm gold nanocrystals(AuNCs).The U-SiO_(2)not only realizes the uniform self-assembly of AuNCs,but also prevents their aggregation due to the unique confinement effect.The finite-difference time-domain simulations show that the AuNCs on U-SiO_(2)can generate plasmonic hot spots with highly enhanced electromagnetic field.Moreover,the hot electrons can be effectively and rapidly transferred through the interface junction to TiO_(2).Thus,a high visible-light-driven photocatalytic activity can be observed,which is 3.8 times higher than that of smooth photocatalysts.The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.
文摘In this paper, we define a class of domains in R^n. Using the synchronous coupling of reflecting Brownian motion, we obtain the monotonicity property of the solution of the heat equation with the Neumann boundary conditions. We then show that the hot spots conjecture holds for this class of domains.
文摘Indications exist that mobile phones may cause non-specific biological effects. They are classified as being of implausible non-thermal nature due to low quantum energy and low specific absorption rate levels, even if considering worst cases of "hot spots" of only millimeter size. The considerations of this paper demonstrate that classical theory of polarization offers a conventional interpretation for all three the existence of so far unclarified effects, their low reproducibility and their low intensity. The basis of this explanation is given by the assumption that hot spots contain even hotter “nano spots” on a molecular level according to well known mechanisms of γ-relaxation. In this paper, the concept is put for discussion assuming a heterogeneous system that consists of water molecules as well as larger-sized functional molecules. A consistent interpretation through temperature increase on the level of nanometer sized molecular compounds promises to favor interdisciplinary discussions with respect to safety regulations.
文摘Since the"Thirteenth Five-Year Plan"period,Chinese scholars'research on academic economics has mainly focused on"winning the battle against poverty in education,""developing modern vocational education,""promoting educational structural reform,"and"achieving the equalization of basic public education services."Analysis on themes such as"Humanization."
文摘Law enforcement agencies have begun utilizing traffic and crash data to improve traffic law enforcement delivery. However, many agencies often do not have the resources or expertise to harness fully the benefits this data offers. A free to use, scalable traffic crash hot spot detection tool was developed to aid law enforcement agency decision makers, statewide to the local municipality level. The tool was developed to identify crash hot spots algorithmically with </span><span style="font-family:Verdana;">a range of customizable parameters based on location, date and time, and</span><span style="font-family:Verdana;"> crash factors, enabling quick, dynamic queries. These capabilities provide the ability for law enforcement agencies to conduct “what if” analyses and make data-driven allocation decisions, placing officer resources where they are most needed. The two-step algorithm first identifies potential hot spots based on </span><span style="font-family:Verdana;">crash density and then ranks each hot spot using a standardized z-score </span><span style="font-family:Verdana;">measure of relative significance. To test the viability of the tool, a pilot was conducted identifying 27 hot spots across Wisconsin where targeted enforcement was then deployed. Despite officer skepticism, results from the pilot found officers at sites targeted for speeding and seatbelt violations were nearly twice as likely to initiate traffic stops compared to non-targeted hot spots. Empirical Bayes before-and-after crash analyses found fatal and injury crashes reduced significantly by nearly 11% during the months with targeted enforcement, while property damage crashes and total crashes were unchanged. Overall, the results show the algorithm can identify hotspots where, coupled with targeted enforcement, traffic safety improvements can be made.
基金This project is supported by Science Technology Development Foundation of Shanghai(No.0lJCl400l)+1 种基金Scientific Foundation of Hebei University of ScienceTechnology (No.XZ9906)
文摘The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved.
文摘This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.
文摘The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.
基金This project is supported by National Natural Science Foundation of China(No.50175081).
文摘Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The proposed mathematical model can be employed to indicate both the positionand size of the hot spot at fire-facing wall of heated tube of combustion chamber, and is characteristicof simplicity and efficiency If coupled with thermoelectric couple or infrared viewer, the presentedlocation method of combustion hot spot can offer engineers very valuable proposal to keep furnacerunning more safely The same is true for any other type of tubular furnaces.
文摘The great gorge of Yarlung Zangbo river is a hot\|spot over earth has been proved by the gravity, geomagnetic, geological, geothermal heat and atmospheric data. Some substances often surge from mantle to the earth surface, which process is not constant and has obvious pulse, characterized by ground temperature over hot\|spot region where is a apparent positive relation in correlation map of the variations of Zedang’s temperature (at 3 2m) in stations over China from 1965 to 1992. It can bring more precipitation here. Out of from the hot spot, there are positive and negative axes around the hot\|spot and to arrange in circular waves with same distance. The average distant of the axes is about 820km, which prove the pulse propagation would infect the distribution of summer precipitation in China. In the hot\|spot region, the geothermal heat pulse propagation has preference direction. So, it has obvious contribution for summer precipitation in South Ch ina.