A thorough understanding of the texture evolution of near-αtitanium alloys during the hot metal forming can help obtain an optimal crystallographic texture and material performance.The strain state has an obvious eff...A thorough understanding of the texture evolution of near-αtitanium alloys during the hot metal forming can help obtain an optimal crystallographic texture and material performance.The strain state has an obvious effect on the texture evolution of near-αtitanium alloys during the hot metal forming.In this paper,the texture evolution of a near-αTA15 titanium alloy during the hot metal forming under different strain states were discussed based on the crystal plasticity finite element method.It is found that the basal and prismatic slip systems are regarded as the dominant slip modes due to the similar low critical resolved shear stress during the hot metal forming of the TA15 sheet rotating the lattice around the[1010]and 0001 axis,respectively.Once both of them cannot be activated,the pyramidal-2 slipping occurs rotating the lattice around the[1010]axis.The relationship between the texture evolution and strain state is established.All the(0001)orientations form a band perpendicular to the direction of the first principal strain.The width of the band along the direction of the second principal strain depends on the ratio of the compressive effect to the tensile effect of the second principal strain.This relationship can help control the crystallographic texture and mechanical properties of the titanium alloys component during the hot metal forming.展开更多
Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissoluti...Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissolution/solubility,supersaturation,and"spring-parachute"process is still poorly understood,particularly for certain amorphous supersaturating drug delivery systems(aSDDS).The present work aimed to explore the detailed merit of current attractive amorphization manufacturing methods(i.g.,hot-melt extrusion(HME)technique)on the property improvement of aSDDS in form of amorphous solid dispersion microparticles by employing a model Bcs II drug nitrendipine and a polyvinylpyrrolidone-based model polymer copovidone.Many asDDS systems were developed by various methods,and their physicochemical properties were characterized by SEM,PXRD and DSC.HME-triggered amorphization induced superior supersaturation by the observation of the highest dissolution and solubility.HME induced the optimal supersaturation duration by the observed greatest extension of"spring-parachute"process(e.g,maximum AUCspring-parachute).HME technique is comparable with other techniques for the stabilization of amorphous state during storage.All aSDDS systems by HME and other methods showed improved long-term stability of the amorphous state in comparison to the pure amorphous drug.Fourier transformation infrared spectroscopy,Noyes-Whitney equation,nucleation theory and Gibbs free energy of transfer(△G)were used to analyze the underlying mechanisms.Mo-lecular mechanism studies indicated that HME caused a stronger crystallization inhibition effect in the asDDS systems than other methods,but molecular interaction is not a dominant mechanism for property enhancement caused by HME.For the mechanism associated with the polymer itself(PVPVA64),it could inhibit the drug recrystallization,solubilize the drug spontaneously and cause the improved molecular interactions in all aSDDS systems.This study provided a deep insight into detailed advantage of HME-triggered supersaturation/amorphization and facilitated the applications of the technique both in the field of particuology and in pharmaceutical industry.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51401065).
文摘A thorough understanding of the texture evolution of near-αtitanium alloys during the hot metal forming can help obtain an optimal crystallographic texture and material performance.The strain state has an obvious effect on the texture evolution of near-αtitanium alloys during the hot metal forming.In this paper,the texture evolution of a near-αTA15 titanium alloy during the hot metal forming under different strain states were discussed based on the crystal plasticity finite element method.It is found that the basal and prismatic slip systems are regarded as the dominant slip modes due to the similar low critical resolved shear stress during the hot metal forming of the TA15 sheet rotating the lattice around the[1010]and 0001 axis,respectively.Once both of them cannot be activated,the pyramidal-2 slipping occurs rotating the lattice around the[1010]axis.The relationship between the texture evolution and strain state is established.All the(0001)orientations form a band perpendicular to the direction of the first principal strain.The width of the band along the direction of the second principal strain depends on the ratio of the compressive effect to the tensile effect of the second principal strain.This relationship can help control the crystallographic texture and mechanical properties of the titanium alloys component during the hot metal forming.
基金supported by National Natural Science Foundation of China(No.82172593 and 82204729)Science and Technology Development Program of Jjilin Province of China(No.20210101430JC,YDZJ202201ZYTS234 and YDZJ202201ZYTS223)+4 种基金China Postdoctoral Science Foundation(No.2015M571373)Science and Technology Development Program of jilin City in Jjilin Province of China(No.20200104067,201831739 and 201464053)Scientific Research Foundation of the Education Department of Jilin Province of China(No.JJKH20191072KJ and 2015-401)Doctoral Research Startup Fund Project of Jilin Medical University(No.JYBS2021002LK)the College Students'Innovation Project of Jilin Province(No.202013706026).
文摘Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissolution/solubility,supersaturation,and"spring-parachute"process is still poorly understood,particularly for certain amorphous supersaturating drug delivery systems(aSDDS).The present work aimed to explore the detailed merit of current attractive amorphization manufacturing methods(i.g.,hot-melt extrusion(HME)technique)on the property improvement of aSDDS in form of amorphous solid dispersion microparticles by employing a model Bcs II drug nitrendipine and a polyvinylpyrrolidone-based model polymer copovidone.Many asDDS systems were developed by various methods,and their physicochemical properties were characterized by SEM,PXRD and DSC.HME-triggered amorphization induced superior supersaturation by the observation of the highest dissolution and solubility.HME induced the optimal supersaturation duration by the observed greatest extension of"spring-parachute"process(e.g,maximum AUCspring-parachute).HME technique is comparable with other techniques for the stabilization of amorphous state during storage.All aSDDS systems by HME and other methods showed improved long-term stability of the amorphous state in comparison to the pure amorphous drug.Fourier transformation infrared spectroscopy,Noyes-Whitney equation,nucleation theory and Gibbs free energy of transfer(△G)were used to analyze the underlying mechanisms.Mo-lecular mechanism studies indicated that HME caused a stronger crystallization inhibition effect in the asDDS systems than other methods,but molecular interaction is not a dominant mechanism for property enhancement caused by HME.For the mechanism associated with the polymer itself(PVPVA64),it could inhibit the drug recrystallization,solubilize the drug spontaneously and cause the improved molecular interactions in all aSDDS systems.This study provided a deep insight into detailed advantage of HME-triggered supersaturation/amorphization and facilitated the applications of the technique both in the field of particuology and in pharmaceutical industry.