The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro...The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .展开更多
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve...Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight.展开更多
The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decreas...The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.展开更多
Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studie...Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studied by optical and scanning electron microscope and energy dispersive X ray analysis, and the effects of the thickness of the intermetallic layers and the Si content in hot dip aluminized layers on the interfacial bonding strength were also investigated respectively. It is found that the hot dipped steel and Al Pb alloy are bonded through blank interface bonding and block interface bonding, and the total bonding strength mainly depends on that of blank interfaces and the fraction of blank interfaces. There is a linear relationship between the total bonding strength F and the fraction of blank interfaces K b. The bonding strength varies with the Si content in the hot dipped aluminized layers on the surface of steel sheets, the fraction of blank interfaces and the rotation of the intermetallic blocks. [展开更多
In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mecha...In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.展开更多
Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partition...Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partitioning tempering/QPT) have been investigated to obtain optimal microstructures,which are made up of martensite(hard phase),retained austenite(soft phase),and carbide or nano-bainite.Combination of hot stamping and newly developed heat treatments is discussed.展开更多
背景:功能性训练近些年在国内较为流行,但主要应用于运动训练领域,在医疗健康等方面研究及应用还存在不足。目的:通过对国际功能性训练在医疗健康领域的研究热点、思想动态、前沿以及未来发展趋势进行更加全面且深入的探索和解析,为体...背景:功能性训练近些年在国内较为流行,但主要应用于运动训练领域,在医疗健康等方面研究及应用还存在不足。目的:通过对国际功能性训练在医疗健康领域的研究热点、思想动态、前沿以及未来发展趋势进行更加全面且深入的探索和解析,为体育、医疗健康等领域开展相关研究提供理论依据。方法:从Web of science核心集数据库导出2012-2022年功能性训练有关健康的2206篇高质量文献作为分析对象,结合文献分析法等研究方法,利用Citespace V分析软件对关键词、学科类别、高被引文献等进行可视化分析。结果与结论:①功能性训练在健康领域研究的发文量不断上升,美国发文量较多,影响力较大;中国发文量也较多,但影响力和研究深度欠缺;②提高中老年人身心健康和认知能力是主要热点,其次是预防运动员运动损伤和促进恢复;③未来会加大对青少年、残疾人等群体的研究,对运动员预防损伤和促进恢复会持续增多;④国内学者关于功能性训练对普通群众身体健康影响的有关研究甚少,应更多向提高普通群众身心健康方面聚焦。展开更多
文摘The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .
基金supported by National Natural Science Foundation of China(Grant No.19832020)National Science Fund of Outstanding Youths of China (Grant No.10125208)+1 种基金Chongqing Municipal Programs for Science and Technology Development of China(Grant No.CSTC, 2007AA4008)National Key Technology R&D Program of China(Grant No.2006BA104B04-2)
文摘Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight.
基金funded by General Motors Global Research and Development Center(Grant No.:PS21025708)
文摘The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.
文摘Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studied by optical and scanning electron microscope and energy dispersive X ray analysis, and the effects of the thickness of the intermetallic layers and the Si content in hot dip aluminized layers on the interfacial bonding strength were also investigated respectively. It is found that the hot dipped steel and Al Pb alloy are bonded through blank interface bonding and block interface bonding, and the total bonding strength mainly depends on that of blank interfaces and the fraction of blank interfaces. There is a linear relationship between the total bonding strength F and the fraction of blank interfaces K b. The bonding strength varies with the Si content in the hot dipped aluminized layers on the surface of steel sheets, the fraction of blank interfaces and the rotation of the intermetallic blocks. [
文摘In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.
文摘Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partitioning tempering/QPT) have been investigated to obtain optimal microstructures,which are made up of martensite(hard phase),retained austenite(soft phase),and carbide or nano-bainite.Combination of hot stamping and newly developed heat treatments is discussed.
文摘背景:功能性训练近些年在国内较为流行,但主要应用于运动训练领域,在医疗健康等方面研究及应用还存在不足。目的:通过对国际功能性训练在医疗健康领域的研究热点、思想动态、前沿以及未来发展趋势进行更加全面且深入的探索和解析,为体育、医疗健康等领域开展相关研究提供理论依据。方法:从Web of science核心集数据库导出2012-2022年功能性训练有关健康的2206篇高质量文献作为分析对象,结合文献分析法等研究方法,利用Citespace V分析软件对关键词、学科类别、高被引文献等进行可视化分析。结果与结论:①功能性训练在健康领域研究的发文量不断上升,美国发文量较多,影响力较大;中国发文量也较多,但影响力和研究深度欠缺;②提高中老年人身心健康和认知能力是主要热点,其次是预防运动员运动损伤和促进恢复;③未来会加大对青少年、残疾人等群体的研究,对运动员预防损伤和促进恢复会持续增多;④国内学者关于功能性训练对普通群众身体健康影响的有关研究甚少,应更多向提高普通群众身心健康方面聚焦。