We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibration...We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibrational mode in our protocol is only virtually excited so that the system is insensitive to the thermal field. In addition, we only use two levels of ions as qubits and the successful probability may achieve 100%.展开更多
Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superd...Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.展开更多
A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in t...A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in the selective symmetric Dicke subspace. The scheme only involves a single step and the operation is insensitive to thermal motion. Moreover, the scheme does not require individual addresing of the ions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022), and the Funds of the Natural . Science of Fujian Province, China (Grant No Z0512006).
文摘We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibrational mode in our protocol is only virtually excited so that the system is insensitive to the thermal field. In addition, we only use two levels of ions as qubits and the successful probability may achieve 100%.
文摘Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028the Doctoral Foundation of the Ministry of Education of China under Grant No.20093514110009the Natural Science Foundation of Fujian Province under Grant No.2009J06002
文摘A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in the selective symmetric Dicke subspace. The scheme only involves a single step and the operation is insensitive to thermal motion. Moreover, the scheme does not require individual addresing of the ions.