期刊文献+
共找到35,736篇文章
< 1 2 250 >
每页显示 20 50 100
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures 被引量:1
1
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries zinc anodes High zinc utilization Depth of discharge Anode-free structures
下载PDF
An Electrochemical Perspective of Aqueous Zinc Metal Anode 被引量:1
2
作者 Huibo Yan Songmei Li +1 位作者 Jinyan Zhong Bin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期274-312,共39页
Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become... Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become the leading energy storage candidate to meet the requirements of safety and low cost.Yet,aqueous electrolytes,acting as a double-edged sword,also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side.These reactions include hydrogen evolution reaction,passivation,and dendrites,resulting in poor Coulombic efficiency and short lifespan of AZIBs.A comprehensive review of aqueous electrolytes chemistry,zinc chemistry,mechanism and chemistry of parasitic reactions,and their relationship is lacking.Moreover,the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough.In this review,firstly,the chemistry of electrolytes,zinc anodes,and parasitic reactions and their relationship in AZIBs are deeply disclosed.Subsequently,the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes,and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed.Lastly,the perspectives on the future development direction of aqueous electrolytes,zinc anodes,and Zn/electrolyte interfaces are presented. 展开更多
关键词 Aqueous zinc ions batteries Parasitic reactions Aqueous electrolyte zinc anode
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
3
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:2
4
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
Polymer engineering for electrodes of aqueous zinc ion batteries 被引量:1
5
作者 Zhi Peng Zemin Feng +8 位作者 Xuelian Zhou Siwen Li Xuejing Yin Zekun Zhang Ningning Zhao Zhangxing He Lei Dai Ling Wang Chao Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期345-369,共25页
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor... With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs. 展开更多
关键词 Aqueous zinc ion batteries POLYMER Multi-function Anode protection Energy storage
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
6
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion 被引量:1
7
作者 Zhi Dong Changjun Han +7 位作者 Yanzhe Zhao Jinmiao Huang Chenrong Ling Gaoling Hu Yunhui Wang Di Wang Changhui Song Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期225-245,共21页
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin... Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications. 展开更多
关键词 laser powder bed fusion zinc heterogeneous microstructure bimodal grains strength-ductility synergy
下载PDF
Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc‑Ion Batteries 被引量:1
8
作者 Yimei Chen Zhiping Deng +5 位作者 Yongxiang Sun Yue Li Hao Zhang Ge Li Hongbo Zeng Xiaolei Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期285-299,共15页
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro... The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1). 展开更多
关键词 zinc anode Electric double-layer regulation Multifunction SEI layer Inhibited side reactions and dendrite Rapid kinetics
下载PDF
Investigation and improvement of tiny spot defects on hot-dip galvanized automotive steel sheets
9
作者 GE Zhiyong YANG Bo YANG Jiwu 《Baosteel Technical Research》 CAS 2024年第2期32-38,共7页
The causes of tiny spot defects on the surface of hot-dip galvanized automotive steel sheets were studied using scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS),and effective control measures w... The causes of tiny spot defects on the surface of hot-dip galvanized automotive steel sheets were studied using scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS),and effective control measures were introduced.The results show that rubbing against the top roller after galvanizing is easy due to the local thickness of tiny spot defect location coating;therefore,the surface morphology is different from the normal part.Three kinds of defects,namely zinc slag,small slivers,and pitting,are likely to cause local thickening of the coating after galvanizing,leading to the formation of tiny spots.Therefore,resolving the three types of defects can effectively control the generation of tiny spot defects.Among them,due to the hereditary nature of the small sliver defect,focusing on its control and supervision is necessary. 展开更多
关键词 hot-dip galvanizing tiny spot zinc slag PITTING small sliver
下载PDF
Co/CoO heterojunction rich in oxygen vacancies introduced by O_(2) plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc-air battery 被引量:1
10
作者 Leijun Ye Weiheng Chen +1 位作者 Zhong-Jie Jiang Zhongqing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期14-25,共12页
Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well... Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs. 展开更多
关键词 HETEROJUNCTION oxygen evolution/reduction reaction oxygen vacancies rechargeable zinc–air battery three‐dimensional nitrogen‐doped hollow carbon nanoboxes
下载PDF
High donor-number and low content electrolyte additive for stabilizing zinc metal anode
11
作者 Yuxin Gong Ruifan Lin +9 位作者 Bo Wang Huaizheng Ren Lei Wang Han Zhang Jianxin Wang Deyu Li Yueping Xiong Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期626-635,I0014,共11页
The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactio... The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactions.Herein,to stabilize both zinc anodes and water molecules,we developed a modified electrolyte by adding a trace amount of N,N-diethylformanmide(DEF)into the ZnSO_(4)electrolyte for the first time in zinc ion batteries.The effectiveness of DEF is predicted by the comparison of donor number and its preferential adsorption behavior on the zinc anode is further demonstrated by several spectroscopy characterizations,electrochemical methods,and molecular dynamics simulation.The modified electrolyte with 5%v.t.DEF content can ensure a stable cycling life longer than 3400 h of Zn‖Zn symmetric cells and an ultra-reversible Zn stripping/plating process with a high coulombic efficiency of 99.7%.The Zn‖VO_(2)full cell maintains a capacity retention of 83.5%and a 104 mA h g^(-1)mass capacity after 1000cycles.This work provides insights into the role of interfacial adsorption behavior and the donor number of additive molecules in designing low-content and effective aqueous electrolytes. 展开更多
关键词 Aqueous zinc ion batteries zinc anode Electrolyte additives Donor number zinc dendrites
下载PDF
Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries
12
作者 Jiabing Miao Yingxiao Du +5 位作者 Ruotong Li Zekun Zhang Ningning Zhao Lei Dai Ling Wang Zhangxing He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期33-47,共15页
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin... Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs. 展开更多
关键词 zinc ion batteries ANODE zinc metal-free anode recent advances PERSPECTIVES
下载PDF
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
13
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery zinc anode zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
下载PDF
Imide-pillared covalent organic framework protective films as stable zinc ion-conducting interphases for dendrite-free Zn metal anodes
14
作者 Xiaoman Ye Xuemei Xiao +3 位作者 Zhijing Wu Xin Wu Lin Gu Sheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期470-477,I0010,共9页
The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared cov... The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared covalent organic framework(ZPC)protective film has been engineered as a stable Zn^(2+)ion-conducting interphase to modulate interfacial kinetics and suppress side reactions for ZMAs.Compared to bare Zn,ZPC@Zn exhibits a higher Zn^(2+)ionic conductivity,a larger Zn^(2+)transference number,a lower electronic conductivity,a smaller desolvation activation energy and correspondingly a significant suppression of corrosion,hydrogen evolution and Zn dendrites.Impressively,the ZPC@Zn||ZPC@Zn symmetric cell obtains a cycling lifespan over 3000 h under 5 mA cm^(-2)for 1 mA h cm^(-2).The ZPC@Zn||NH_(4)V_(4)O_(10)coin-type full battery delivers a specific capacity of 195.8 mA h g^(-1)with a retention rate of78.5%at 2 A g^(-1)after 1100 cycles,and the ZPC@Zn||NH_(4)V_(4)O_(10) pouch full cell shows a retention of70.1%in reversible capacity at 3 A g^(-1)after 1100 cycles.The present incorporation of imide-linked covalent organic frameworks in the surface modification of ZMAs will offer fresh perspectives in the search for ideal protective films for the practicality of AZIBs. 展开更多
关键词 Aqueous zinc ion batteries zinc metal anodes Surface modification Covalent organic frameworks Imide linkage
下载PDF
Correction: Surface Patterning of Metal ZincElectrode with an In-Region Zincophilic Interfacefor High-Rate and Long-Cycle-Life Zinc MetalAnode
15
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova-Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期456-457,共2页
Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Mater... Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany. 展开更多
关键词 CORRECTION zinc ELECTRODE
下载PDF
Interphase migration and enrichment of lead and zinc during copper slag depletion
16
作者 Jun HAO Zhi-he DOU +2 位作者 Xing-yuan WAN Ting-an ZHANG Kun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3029-3041,共13页
An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula... An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase. 展开更多
关键词 depletion LEAD copper slag STIRRING zinc
下载PDF
Dietary supplementation of zinc oxide modulates intestinal functionality during the post-weaning period in clinically healthy piglets
17
作者 Dirkjan Schokker Soumya K.Kar +3 位作者 Els Willems Alex Bossers Ruud A.Dekker Alfons J.M.Jansman 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期313-328,共16页
Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an... Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O. 展开更多
关键词 Immune system Intestinal functionality MICROBIOTA PIGLETS zinc oxide
下载PDF
In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery
18
作者 Chen-Yang Li Jiang-Lin Wang +7 位作者 Dong-Ting Zhang Min-Peng Li Hao Chen Wei-Hai Yi Xin-Ying Ren Bao Liu Xue-Feng Lu Mao-Cheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期342-351,I0007,共11页
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ... Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries. 展开更多
关键词 In-suit CPZ hydrogel electrolyte Hydrogen evolution reaction and zinc corrosion Dendrites growth zinc anode-electrolyte interface Zn ion batteries
下载PDF
Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice
19
作者 Kunhikrishnan Hemalatha DHANYALAKSHMI Reshma MOHAN +7 位作者 Sasmita BEHERA Uday Chand JHA Debashis MOHARANA Ahalya BEHERA Sini THOMAS Preman Rejitha SOUMYA Rameswar Prasad SAH Radha BEENA 《Rice science》 SCIE CSCD 2024年第5期526-544,I0029,I0030,共21页
Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Desp... Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Despite serving as a staple for over half of the world's population, rice falls short in meeting daily nutritional requirements, especially for iron(Fe) and zinc(Zn). Genetic resources, such as wild rice species and specific rice varieties, offer promising avenues for enhancing Fe and Zn content. Additionally, molecular breeding approaches have identified key genes and loci associated with Fe and Zn accumulation in rice grains. This review explores the genetic resources and molecular mechanisms underlying Fe and Zn accumulation in rice grains. The functional genomics involved in Fe uptake, transport, and distribution in rice plants have revealed key genes such as OsFRO1, OsIRT1, and OsNAS3. Similarly, genes associated with Zn uptake and translocation, including OsZIP11 and OsNRAMP1, have been identified. Transgenic approaches, leveraging transporter gene families and genome editing technologies, offer promising avenues for enhancing Fe and Zn content in rice grains. Moreover, strategies for reducing phytic acid(PA) content, a known inhibitor of mineral bioavailability, have been explored, including the identification of low-PA mutants and natural variants. The integration of genomic information, including whole-genome resequencing and pan-genome analyses, provides valuable insights into the genetic basis of micronutrient traits and facilitates targeted breeding efforts. Functional genomics studies have elucidated the molecular mechanisms underlying Fe uptake and translocation in rice. Furthermore, transgenic and genome editing techniques have shown promise in enhancing Fe and Zn content in rice grains through the manipulation of key transporter genes. Overall, the integration of multi-omics approaches holds significant promise for addressing global malnutrition and hidden hunger by enhancing the nutritional quality of rice, thereby contributing to improved food and nutritional security worldwide. 展开更多
关键词 BIOFORTIFICATION grain quality IRON phytic acid RICE zinc
下载PDF
The Effects of Zinc Sulfate on the in Vitro Digestibility of Feeds in Cervids
20
作者 Reese J. Thibodeaux Philip M. Urso +3 位作者 Stanley F. Kelley Marcy M. Beverly Chris R. Stewart Ian C. Dunn 《Open Journal of Animal Sciences》 2024年第3期157-167,共11页
The captive white-tailed deer industry has an estimated impact of 1.6 billion USD in the state of Texas alone. However, nutritional requirements for cervids are determined through research based on sheep and goats. Th... The captive white-tailed deer industry has an estimated impact of 1.6 billion USD in the state of Texas alone. However, nutritional requirements for cervids are determined through research based on sheep and goats. The objective of this study was to determine the effects of zinc on differences in dry matter digestibility in vitro for white-tailed does (Odocoileus virginianus). Deer (n = 2) were ethically harvested, rumens were collected, and placed into a cooler containing warm water. Rumen contents were agitated, and fluid was filtered using cheese cloth while applying CO2. Fluid was placed into four separate incubator jars with filter bags containing a 1:1 alfalfa to coastal hay blend. Zinc doses of 0.073 mg/kg/d equivalents were added to two of the jars ( Zn), and the additional two jars received 0.00 mg/kg/d (CON). Following 48 h of incubation, in vitro true digestibility (IVTD) showed no significant differences between the control and the treatment groups. Average dry matter digested in vitro was 91.87% and 95.13%, respectively. There were no differences detected in ADF, NDF, IVTD, or OM between the treatment groups. While no detectable differences were observed in this study, this methodology did prove to be viable and functional for microbial digestion in vitro. This study can be replicated with multiple experimental units to confirm the observations of increased digestibility. Formal nutritional guidelines can be created to allow for more efficient feeding of cervids thereby reducing feed costs and continuing the growth of the captive deer industry. 展开更多
关键词 zinc IVDMD In Vitro CERVIDS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部