A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simula...A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel(DP600) was investigated using optical microscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength(YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient(n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength(UTS) and elongation(A80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties(YS = 362 MPa, UTS = 638 MPa, A_(80) = 24.3%, n = 0.17) was obtained via process A.展开更多
Intercritical heat treatment operation has been in use for the development of Dual Phase Steel (DPS) and has been found to improve the mechanical properties of the steel. In spite of the enhancement a limitation was h...Intercritical heat treatment operation has been in use for the development of Dual Phase Steel (DPS) and has been found to improve the mechanical properties of the steel. In spite of the enhancement a limitation was however observed as to its corrosion susceptibility. In a bid to further enhance the corrosion resistance of the DPS while maintaining its mechanical properties, galvanealing operation was adopted which involving the immersion of the DPS into Al-Zn melt and subsequently subjecting it to annealing operation at 550°C. Weight loss and linear polarization technique were used to measure or evaluate its resistance in 3.5% NaCl (a simulated marine environment). A minimum of 3 samples was used per immersion time. From the result, it was observed that there is a general sharp decrease in the corrosion rate of the GAS as compared to the control sample. The sample immersed and allowed to dwell in the melt for 20 seconds and further annealed with a soaking time of 20 minutes exhibited the highest corrosion resistance. The polarization curve also shows that the substrate was generally passivated, and this is as a result of the Al-Zn/Fe adhesiveness.展开更多
The relationship between the corrosion resistance and martensite structure of Ni-advanced dual-phase weathering steel was studied using transmission electron microscopy,scanning electron microscopy,electrochemical ana...The relationship between the corrosion resistance and martensite structure of Ni-advanced dual-phase weathering steel was studied using transmission electron microscopy,scanning electron microscopy,electrochemical analysis,and atomic force microscopy.The investigations indicate that the final microstructure of the dual-phase weathering steel was composed of a large amount of low-carbon lath martensite distributed in the ferrite matrix.The potential of the martensite phase is higher than that of ferrite,which acts as a microcathode.As the martensite volume fraction in the Ni-advanced dual-phase weathering steel increased,the corrosion rate increased owing to the greater galvanic couple formed between the ferrite and martensite from the increasing ratio of the cathode area to the anode area.In addition,this work provides a method to obtain advanced weathering steel with improved mechanical properties and corrosion resistance.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.U1360202,51472030,and 51502014)
文摘A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel(DP600) was investigated using optical microscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength(YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient(n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength(UTS) and elongation(A80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties(YS = 362 MPa, UTS = 638 MPa, A_(80) = 24.3%, n = 0.17) was obtained via process A.
文摘Intercritical heat treatment operation has been in use for the development of Dual Phase Steel (DPS) and has been found to improve the mechanical properties of the steel. In spite of the enhancement a limitation was however observed as to its corrosion susceptibility. In a bid to further enhance the corrosion resistance of the DPS while maintaining its mechanical properties, galvanealing operation was adopted which involving the immersion of the DPS into Al-Zn melt and subsequently subjecting it to annealing operation at 550°C. Weight loss and linear polarization technique were used to measure or evaluate its resistance in 3.5% NaCl (a simulated marine environment). A minimum of 3 samples was used per immersion time. From the result, it was observed that there is a general sharp decrease in the corrosion rate of the GAS as compared to the control sample. The sample immersed and allowed to dwell in the melt for 20 seconds and further annealed with a soaking time of 20 minutes exhibited the highest corrosion resistance. The polarization curve also shows that the substrate was generally passivated, and this is as a result of the Al-Zn/Fe adhesiveness.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300604)the National Natural Science Foundation of China(No.51671028)。
文摘The relationship between the corrosion resistance and martensite structure of Ni-advanced dual-phase weathering steel was studied using transmission electron microscopy,scanning electron microscopy,electrochemical analysis,and atomic force microscopy.The investigations indicate that the final microstructure of the dual-phase weathering steel was composed of a large amount of low-carbon lath martensite distributed in the ferrite matrix.The potential of the martensite phase is higher than that of ferrite,which acts as a microcathode.As the martensite volume fraction in the Ni-advanced dual-phase weathering steel increased,the corrosion rate increased owing to the greater galvanic couple formed between the ferrite and martensite from the increasing ratio of the cathode area to the anode area.In addition,this work provides a method to obtain advanced weathering steel with improved mechanical properties and corrosion resistance.