期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels 被引量:8
1
作者 WANG Shu-qi CHEN Kang-min +2 位作者 CUI Xiang-hong JIANG Qi-chuan HONG Bian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第5期53-59,共7页
The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wea... The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface. 展开更多
关键词 hot-forging die cast steel alloying element thermal wear MECHANISM
下载PDF
Numerical Simulation of Coupled Thermo-mechanical Behavior of a Cylinder Billet during Hot-forging Process
2
作者 Peiran Ding, Don g-Ying Ju, Shoji Imatani, Tatsuo Inoue 1.Engineering Services Department, MSC Japan Ltd., Osaka, Japan 2.Department of Mechanical Engineering, Saitama Institute of Technology, Saitama, Japan 3.Department of Energy Conversion Science, K 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期263-269,共7页
A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodo... A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed. 展开更多
关键词 hot-forging numerical simulation FINITE volume method EULERIAN FORMULATION THERMO-MECHANICAL coupling
下载PDF
Determination and Analysis of Hardenability for Hot-Forging Die Steels with Deep-Hardening
3
作者 ZHAO Gang JIANG Min +3 位作者 QIN Gao-wu HAO Shi-ming GU Rong DAI Jian-ming 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2000年第1期27-30,共4页
ERH end-quenching method was used to determine the hardenability of four kinds hot-forging die steels with deep-hardening and hence the order of their hardenability was given.The tempering hardness of the steels was m... ERH end-quenching method was used to determine the hardenability of four kinds hot-forging die steels with deep-hardening and hence the order of their hardenability was given.The tempering hardness of the steels was measured and the tempering resistance was studied.It was approved that ERH method is effective for the determination of hardenability of deep-hardening steel and the beginning of hardness drop in the ERH specimen is caused by bainite occurring. 展开更多
关键词 HARDENABILITY deep-hardening steel hot-forging die steel tempering resistance
下载PDF
Research on Thermal Wear of Cast Hot Forging Die Steel Modified by Rare Earths 被引量:6
4
作者 崔向红 王树奇 +1 位作者 姜启川 陈康敏 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期88-92,共5页
Thermal wear of cast hot-forging die steel modified by rare earths(RE) was studied and compared with commercially used die steels. The function of RE and the mechanism of thermal wear of cast steel modified by RE we... Thermal wear of cast hot-forging die steel modified by rare earths(RE) was studied and compared with commercially used die steels. The function of RE and the mechanism of thermal wear of cast steel modified by RE were discussed. The results showed that with increasing content of RE, the wear rate of cast steel reduced at first and then increased. By adding 0.05% (mass fraction) RE, the cast hot-forging die steel with optimum thermal wear resistance was obtained, which was better than that of H13 and 3Cr2WSV. The large amount of coarse inclusions, (RE)2O2S, resulted from excessive RE, which obviously deteriorated thermal wear resistance. The mechanism of thermal wear of the modified cast die steel is oxidation wear and oxide fatigue delamination. The wear debris are lumps of Fe2O3 and Fe3O4. 展开更多
关键词 cast steel hot-forging die thermal wear rare earths
下载PDF
Alloying Design for High Wear-Resistant Cast Hot-Forging Die Steels 被引量:10
5
作者 CUI Xiang-hong SHAN Jun +3 位作者 YANG Zi-run WEI Min-xian WANG Shu-qi DONG Chuang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2008年第4期67-72,共6页
The alloying design of cast hot-forging die steels was analyzed. The relationship of the life of cast hot-forging dies with the failure patterns was studied. The thermal wear resistance was believed to be the key prop... The alloying design of cast hot-forging die steels was analyzed. The relationship of the life of cast hot-forging dies with the failure patterns was studied. The thermal wear resistance was believed to be the key property for the alloying design of cast hot-forging die steels. The alloying design parameters were selected and optimized for the cast hot-forging die steel with high wear resistance. The wear resistance of the optimized cast die steel was evaluated in comparison with commercial H13 steels and 3Cr2WSV steel. In the new cast hot-forging die steel, VC is predominant carbide with Cr and Mo as the main solution elements in α-Fe. It is found that the cast die steel has significantly lower wear rate than normal H13 steel and 3Cr2W8V steel, almost the same as that of high purity H13 steel. The high wear resistance of the new cast hot-forging die steel can be attributed to its reasonable alloying design and nonsensibility to the detrimental function of S and P. 展开更多
关键词 hot-forging die cast steel wear resistance alloying design
原文传递
Selection of Heat Treatment Process and Wear Mechanism of High Wear Resistant Cast Hot-Forging Die Steel 被引量:6
6
作者 WEI Min-xian WANG Shu-qi +2 位作者 WANG Lan CUI Xiang-hong CHEN Kang-min 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2012年第5期50-57,共8页
Dry sliding wear tests of a Cr-Mo-V cast hot-forging die steel was carried out within a load range of 50--300 N at 400℃ by a pin-on-disc high temperature wear machine. The effect of heat treatment process on wear res... Dry sliding wear tests of a Cr-Mo-V cast hot-forging die steel was carried out within a load range of 50--300 N at 400℃ by a pin-on-disc high temperature wear machine. The effect of heat treatment process on wear resistance was systematically studied in order to select heat treatment processes of the steel with high wear resistance. The morphology, structure and composition were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) ; wear mechanism was also discussed. Tribo-oxide layer was found to form on worn surfaces to reduce wear under low loads, but appear inside the matrix to increase wear under high loads. The tribo-oxides were mainly consisted of Fe3O4 and Fe2O3, FeO only appeared under a high load. Oxidative mild wear, transition of mild-severe wear in oxidative wear and extrusive wear took turns to operate with increasing the load. The wear resistance strongly depended on the selection of heat treatment processes or microstructures. It was found that bainite presented a better wear resistance than martensite plus bainite duplex structure, martensite structure was of the poorest wear resistance. The wear resistance increased with increasing austenizing temperature in the range of 920 to 1 120 ℃, then decreased at up to 1 220 ℃. As for tempering temperature and microstructure, the wear resistance increased in following order: 700℃ (tempered sorbite), 200 ℃ (tempered martensite), 440 to 650 ℃ (tempered troostite). An appropriate combination of hardness, toughness, microstructural thermal stability was re- quired for a good wear resistance in high-temperature wear. The optimized heat treatment process was suggested for the cast hot-forging steel to be austenized at 1020 to 1 120 ℃, quenched in oil, then tempered at 440 to 650℃ for 2 h. 展开更多
关键词 cast hot-forging die steel heat treatment process high-temperature wear mechanism wear behavior MICROSTRUCTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部