Sinter strength is dependent not only on the self-intensity of the residual rude and bonding phase but also on the bonding degree between them. The infiltration behavior of sintering liquid on nuclei ores influences t...Sinter strength is dependent not only on the self-intensity of the residual rude and bonding phase but also on the bonding degree between them. The infiltration behavior of sintering liquid on nuclei ores influences the bonding degree, which ultimately determines the sinter strength. Infiltration tests were conducted using micro-sinter equipment. The infiltration area index of original liquid(IAO), infiltration volume index of secondary liquid(IVS), and sinter body bonding strength(SBS) were proposed to study the melt infiltration behavior. The results show that the IVS first increases and then decreases with increasing TiO2 content in adhering fines, whereas the IAO exhibits the opposite behavior. Compared with the original liquid, the secondary liquid shows lower porosity, smaller pores, and more uniform distribution. The SBS increases first and then decreases with increasing IAO and TiO2 content, and reaches a maximum when the IAO and TiO2 contents are approximately 0.5 and 2.0wt%, respectively. The SBS first increases and then tends to be stable with increasing IVS. The TiO2 content is suggested to be controlled to approximately 2.0wt% in low-titanium ore sintering.展开更多
The reactive spontaneous infiltration of Al-activated TiO2 (anatase) was investigated. Pure Al powder was blended with TiO2 for activation. They were compacted into the preform and then sealed within 6060 alloy mould....The reactive spontaneous infiltration of Al-activated TiO2 (anatase) was investigated. Pure Al powder was blended with TiO2 for activation. They were compacted into the preform and then sealed within 6060 alloy mould. The activation and infiltration were carried out in 6060 alloy bath for 1 h and comparative sintering experiments were carried out in an argon protected environment under the same conditions of temperature and duration. X-ray diffraction analysis proved that the Al sealed environment was superior to the argon protection on activating the reaction between Al and TiO2. The blending ratio of TiO2 to Al and the temperature were found to play the most important role in infiltration by affecting infiltration and reaction kinetics. Three main types of microstructures were observed after infiltration: full infiltration, partial infiltration with the formation of cracks and no infiltration. The formation of these microstructures was explained on the basis of reaction kinetics and local volume changes due to the reactions. Ultimately, it is found that to obtain an overall good spontaneous infiltration, a TiO2 to Al blending ratio around 3:7 in volume and an infiltration temperature around 900 °C are the most suitable.展开更多
Using forming-knitting technology and organic materials, copper foam with high porosity (>80%) and open-pore structure was successfully prepared. According to the method of immersion, the technical characteristics ...Using forming-knitting technology and organic materials, copper foam with high porosity (>80%) and open-pore structure was successfully prepared. According to the method of immersion, the technical characteristics of metal paste performance and influence factors of sinter process were discussed. The pore morphology and compressibility of copper foam were detected simultaneously, and the structural property of copper foam prepared by the process of once-infiltrating was compared with the one of copper foam prepared by the process of twice-infiltrating. The results show that pH value of metal paste has a large influence on rheological properties of slurry. By twice-infiltrating process, the microstructure of copper foam was altered. In case of the porosity dropping indistinctly, the compression stress of copper foam platform was raised from 0.5 MPa to 1 Mpa which was of great significance to improve the energy absorption capacity of the material.展开更多
Some properties of the Fe-based P/M composites sintered and reinforced by infiltration with Cu-Sn alloy were described.It is shown that the hardness of the sintered material is 2.5 times lower,tensile strength is 1.7 ...Some properties of the Fe-based P/M composites sintered and reinforced by infiltration with Cu-Sn alloy were described.It is shown that the hardness of the sintered material is 2.5 times lower,tensile strength is 1.7 times lower and the wear resistance is 2.5-3.3 times lower in comparison with those of the infiltrated material.The presence of pores on the friction surface of the sintered material affects the features of the wear process.Due to the specific morphology of copper in the infiltrated material,the phenomenon of selective mass transfer is observed and worn surfaces have a spongy-capillary texture.展开更多
Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions ...Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.展开更多
基金financially supported by the Major State Basic Research Development Program of China (No. 2012CB720401)the Natural Science Foundation of China and Baosteel (No. 51134008)the National Natural Science Foundation of China (No. U1260202)
文摘Sinter strength is dependent not only on the self-intensity of the residual rude and bonding phase but also on the bonding degree between them. The infiltration behavior of sintering liquid on nuclei ores influences the bonding degree, which ultimately determines the sinter strength. Infiltration tests were conducted using micro-sinter equipment. The infiltration area index of original liquid(IAO), infiltration volume index of secondary liquid(IVS), and sinter body bonding strength(SBS) were proposed to study the melt infiltration behavior. The results show that the IVS first increases and then decreases with increasing TiO2 content in adhering fines, whereas the IAO exhibits the opposite behavior. Compared with the original liquid, the secondary liquid shows lower porosity, smaller pores, and more uniform distribution. The SBS increases first and then decreases with increasing IAO and TiO2 content, and reaches a maximum when the IAO and TiO2 contents are approximately 0.5 and 2.0wt%, respectively. The SBS first increases and then tends to be stable with increasing IVS. The TiO2 content is suggested to be controlled to approximately 2.0wt% in low-titanium ore sintering.
基金the Chinese Scholarship Council (CSC) for financial support (2010612033)
文摘The reactive spontaneous infiltration of Al-activated TiO2 (anatase) was investigated. Pure Al powder was blended with TiO2 for activation. They were compacted into the preform and then sealed within 6060 alloy mould. The activation and infiltration were carried out in 6060 alloy bath for 1 h and comparative sintering experiments were carried out in an argon protected environment under the same conditions of temperature and duration. X-ray diffraction analysis proved that the Al sealed environment was superior to the argon protection on activating the reaction between Al and TiO2. The blending ratio of TiO2 to Al and the temperature were found to play the most important role in infiltration by affecting infiltration and reaction kinetics. Three main types of microstructures were observed after infiltration: full infiltration, partial infiltration with the formation of cracks and no infiltration. The formation of these microstructures was explained on the basis of reaction kinetics and local volume changes due to the reactions. Ultimately, it is found that to obtain an overall good spontaneous infiltration, a TiO2 to Al blending ratio around 3:7 in volume and an infiltration temperature around 900 °C are the most suitable.
基金National Natural Science Foundation of China(No.50572084)Natural Science Basic Research Plan in Shaanxi Province of China(No.2012JQ6011)+1 种基金Shaanxi Provincial Key Laboratory Scientific Research Project,China(No.12JS044)Shaanxi Leading Academic Discipline Project,China(No.[2008]169)
文摘Using forming-knitting technology and organic materials, copper foam with high porosity (>80%) and open-pore structure was successfully prepared. According to the method of immersion, the technical characteristics of metal paste performance and influence factors of sinter process were discussed. The pore morphology and compressibility of copper foam were detected simultaneously, and the structural property of copper foam prepared by the process of once-infiltrating was compared with the one of copper foam prepared by the process of twice-infiltrating. The results show that pH value of metal paste has a large influence on rheological properties of slurry. By twice-infiltrating process, the microstructure of copper foam was altered. In case of the porosity dropping indistinctly, the compression stress of copper foam platform was raised from 0.5 MPa to 1 Mpa which was of great significance to improve the energy absorption capacity of the material.
文摘Some properties of the Fe-based P/M composites sintered and reinforced by infiltration with Cu-Sn alloy were described.It is shown that the hardness of the sintered material is 2.5 times lower,tensile strength is 1.7 times lower and the wear resistance is 2.5-3.3 times lower in comparison with those of the infiltrated material.The presence of pores on the friction surface of the sintered material affects the features of the wear process.Due to the specific morphology of copper in the infiltrated material,the phenomenon of selective mass transfer is observed and worn surfaces have a spongy-capillary texture.
文摘Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.