The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surf...The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.展开更多
Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium ...Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.展开更多
Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifi...Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets.展开更多
In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or regi...In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or region. In this paper, properties, microstructures and precipitate morphology of hot-rolled iF steel sheets are described..展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling ...The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.展开更多
Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-micro...Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.展开更多
The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basi...The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.展开更多
The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decompositi...The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.展开更多
In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mecha...In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.展开更多
Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperat...Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.展开更多
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld...Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.展开更多
Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means...Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint.展开更多
The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests w...The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests were carried out to examine the mechanical properties and microhardness distribution of the welded joint. The results show that the joint has the non-homogeneous microstructure and element distribution. The brittle phases such as Fe2 Ti , Fe Ti , Cr2 Ti , Ti3 Ni4, Feo 2 Ni4.s Ti5 and TiN mainly segregate in rich Ti region of fusion zone. The laser-welded joint has the tensile strength of 298 MPa with the elongation of 3.72 % and exhibits the brittle fracture features on the fracture surfaces. The reasons for low joint strength were discussed in this investigation.展开更多
The 30 mm thick ASTM4130 steel pipe was fabricated by gas tungsten arc welding and shielded metal arc welding under quenched and tempered conditions. Whereafier, the mechanical properties of welded joints of both V gr...The 30 mm thick ASTM4130 steel pipe was fabricated by gas tungsten arc welding and shielded metal arc welding under quenched and tempered conditions. Whereafier, the mechanical properties of welded joints of both V groove and combination double V groove were measured, while the microstructure feature and fracture morphology of both welded joints were investigated. Moreover, the effect of groove shapes on the properties of welded joints was explored. The results show that the welding efficiency of the combination double V groove joint is as two times as that of the V groove joint. But the hardness and toughness of the heat-affected zone (HAZ) with combination double V groove can not satisfy the requirements. Also, the coarse grain heat-affected zone (CGHAZ) of the cap layer is mainly composed of granular bainite, tempered martensite and a small amount of carbon-free bainite, and the fractured swface of the fusion line is entirely dominated by the quasi-cleavage mode. That the mechanical properties of the combination double V groove are lower than that of the V groove lie in the penetration ratio, welding heat input, and the areas and distribution feature of brittle zones. The combination double V groove is not suitable for the fabricating of ASTM4130 steel.展开更多
Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flex...Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.展开更多
The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel w...The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120MPa and molding temperature of 150℃. Under this process condition, the percentage of distorted compacts is the lowest.展开更多
This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine...This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.展开更多
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us...Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.展开更多
文摘The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.
文摘Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.
文摘Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets.
基金The auLhors thank for the financial aid from Scienceamend of Shandong Province (No. Q98F05146)
文摘In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or region. In this paper, properties, microstructures and precipitate morphology of hot-rolled iF steel sheets are described..
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
文摘The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.
文摘Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.
文摘The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.
文摘The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.
文摘In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.
基金supported by the Key Research Foundation of Baoshan Iron & Steel Co.,Ltd.(No.D06EBEA207)
文摘Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
基金Project(50974046/E041607) supported by the National Natural Science Foundation of China
文摘Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.
文摘Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint.
基金This research was supported by National Natural Science Foundation of China (No. 50975122).
文摘The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests were carried out to examine the mechanical properties and microhardness distribution of the welded joint. The results show that the joint has the non-homogeneous microstructure and element distribution. The brittle phases such as Fe2 Ti , Fe Ti , Cr2 Ti , Ti3 Ni4, Feo 2 Ni4.s Ti5 and TiN mainly segregate in rich Ti region of fusion zone. The laser-welded joint has the tensile strength of 298 MPa with the elongation of 3.72 % and exhibits the brittle fracture features on the fracture surfaces. The reasons for low joint strength were discussed in this investigation.
基金supported and funded in part by a grant(Project No.ZR2013EEQ027)from the Natural Science Foundation of Shandong Provincea grant(Project No.14CX02066A)from the Fundamental Research Funds for the Central Universities of China
文摘The 30 mm thick ASTM4130 steel pipe was fabricated by gas tungsten arc welding and shielded metal arc welding under quenched and tempered conditions. Whereafier, the mechanical properties of welded joints of both V groove and combination double V groove were measured, while the microstructure feature and fracture morphology of both welded joints were investigated. Moreover, the effect of groove shapes on the properties of welded joints was explored. The results show that the welding efficiency of the combination double V groove joint is as two times as that of the V groove joint. But the hardness and toughness of the heat-affected zone (HAZ) with combination double V groove can not satisfy the requirements. Also, the coarse grain heat-affected zone (CGHAZ) of the cap layer is mainly composed of granular bainite, tempered martensite and a small amount of carbon-free bainite, and the fractured swface of the fusion line is entirely dominated by the quasi-cleavage mode. That the mechanical properties of the combination double V groove are lower than that of the V groove lie in the penetration ratio, welding heat input, and the areas and distribution feature of brittle zones. The combination double V groove is not suitable for the fabricating of ASTM4130 steel.
文摘Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.
基金Project(2001AA337050) supported by the National High Technology Research and Development Program of China ject(81041) supported by the Huo Yindong Education Foundation project(200135) supported by the Chinese Excellent Dissertation
文摘The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120MPa and molding temperature of 150℃. Under this process condition, the percentage of distorted compacts is the lowest.
基金National Science Foundation of China under Grant Nos.50908057 and 51268004Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety under Grant No.2012ZDX10Innovation Project of Guangxi Graduate Education under Grant No.YCBZ2012005
文摘This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.
基金Supported by National Natural Science Foundation of China(No.51268054)Natural Science Foundation of Tianjin(No.13JCQNJC07300)the foundation of Key Laboratory of Coast Civil Structure Safety(Tianjin University),Ministry of Education of China(No.2011-1)
文摘Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.