Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consu...Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.展开更多
Hybrid<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family...Hybrid<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">chiller plants (HCPs)</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">using multiple chillers and different energy sources</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are highly recommended in several energy applications in non-residential buildings such as hospitals and hotels. Time of use and cooling load profiles are significant factors that should be carefully considered either in chiller plant design or in chiller sequencing operation. This article aims to present an operation planning of HCP which consists of both electric and non-electric chillers. Four operational strategies are proposed and solved to compare their coefficients of performance and economics of running costs. A typical hotel building located on the Nile river in Egypt is selected to perform the current thermal and economic case study. The total cooling load profile of this hotel building is 4000 refrigeration tonnage (TR), which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">simulated to optimize chiller sequence of operation and to select optimal design conditions of both numbers for electric and non-electric chillers used in HCP. The results of this comparative study for running cost are defined using various design configurations with different several chiller sequences available for each configuration. Then, the results of COPs, and operational running cost and initial cost are presented in this article also. The comparison aims to find the optimal design and operational sequencing for HCPs on thermal basis and economic analysis which were attached in this article. Recommendations and suggestions for future work are attached at the end of this article.</span></span></span>展开更多
基金support by the National Science and Technology Council under grant no.NSTC 112-2221-E-167-017-MY3.
文摘Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.
文摘Hybrid<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">chiller plants (HCPs)</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">using multiple chillers and different energy sources</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are highly recommended in several energy applications in non-residential buildings such as hospitals and hotels. Time of use and cooling load profiles are significant factors that should be carefully considered either in chiller plant design or in chiller sequencing operation. This article aims to present an operation planning of HCP which consists of both electric and non-electric chillers. Four operational strategies are proposed and solved to compare their coefficients of performance and economics of running costs. A typical hotel building located on the Nile river in Egypt is selected to perform the current thermal and economic case study. The total cooling load profile of this hotel building is 4000 refrigeration tonnage (TR), which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">simulated to optimize chiller sequence of operation and to select optimal design conditions of both numbers for electric and non-electric chillers used in HCP. The results of this comparative study for running cost are defined using various design configurations with different several chiller sequences available for each configuration. Then, the results of COPs, and operational running cost and initial cost are presented in this article also. The comparison aims to find the optimal design and operational sequencing for HCPs on thermal basis and economic analysis which were attached in this article. Recommendations and suggestions for future work are attached at the end of this article.</span></span></span>