提出了一种基于堆叠深度卷积沙漏网络的步态识别方法。为了解决人体建模中关节点准确定位的问题,采用基于深度卷积的沙漏网络来提取步态图上的关节点坐标,并计算肘关节与膝关节的角度作为运动特征。为了解决行走速度变化带来的影响,采...提出了一种基于堆叠深度卷积沙漏网络的步态识别方法。为了解决人体建模中关节点准确定位的问题,采用基于深度卷积的沙漏网络来提取步态图上的关节点坐标,并计算肘关节与膝关节的角度作为运动特征。为了解决行走速度变化带来的影响,采用动态时间规整(Dynamic Time Warping)对特征序列进行距离计算。通过最近邻分类器对结果进行准确分类。该方法在公共CASIA-B数据集与TUM-GAID数据集上进行了验证并与其他方法进行比较,结果表明该方法有较高的识别率。展开更多
文摘提出了一种基于堆叠深度卷积沙漏网络的步态识别方法。为了解决人体建模中关节点准确定位的问题,采用基于深度卷积的沙漏网络来提取步态图上的关节点坐标,并计算肘关节与膝关节的角度作为运动特征。为了解决行走速度变化带来的影响,采用动态时间规整(Dynamic Time Warping)对特征序列进行距离计算。通过最近邻分类器对结果进行准确分类。该方法在公共CASIA-B数据集与TUM-GAID数据集上进行了验证并与其他方法进行比较,结果表明该方法有较高的识别率。