After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the ...After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.展开更多
According to the transit-time difference measurement method,we proposed a design scheme of ultrasonic heat meter based on TDC-GP21.The measurement unit TDC-GP21 mainly completes transit-time measurement and inlet,outl...According to the transit-time difference measurement method,we proposed a design scheme of ultrasonic heat meter based on TDC-GP21.The measurement unit TDC-GP21 mainly completes transit-time measurement and inlet,outlet temperature measurement functions.Control unit and data processing unit based on MSP430F4152 of TI corporation complete functions including peripherals control,data analysis,temperature compensation algorithm,flow pattern compensation algorithm and low power consumption control.The design meets the Town Construction Professional Standard CJ 128-2007,and furthermore,some performances can be improved.展开更多
The design of a new type heat meters based on RFID technology are presented in this paper. By use of RFID technology in heat meters, the data can be exchanged between heat meters and heat supplying department by RF ca...The design of a new type heat meters based on RFID technology are presented in this paper. By use of RFID technology in heat meters, the data can be exchanged between heat meters and heat supplying department by RF cards. The information can be transmitted in a non-contact way. In this way, the purpose of automatic identification can be achieved. The experimental study of the heat meters is also performed in the paper. The results show that the new type of heat meters can meet the demands of users. Compared with the ordinary heat meters, the new type of heat meters have the advantages of small in meter volume, high accuracy, no impact of water quality and good reliability.展开更多
Flowing with the reform of the hot water heating method in China, heat meter will enter into households in the near future. A portable ultrasonic heat meter is designed in this paper. The meter uses chip microprocesso...Flowing with the reform of the hot water heating method in China, heat meter will enter into households in the near future. A portable ultrasonic heat meter is designed in this paper. The meter uses chip microprocessor MSP430F437 as the data process core, and uses ultrasonic flow sensor to measure flow rate of the hot water, and capture input and output temperatures of the hot water using the thermal resistance sensor Ptl000, and then household energy consumption is calculated via temperature difference between input temperature and output temperature of the hot water multiplied by volume of hot water that is calculated though flow rate integration of hot water. In order to test the performance of the proposed heat meter, experiments is carried out. Both the temperature and flow measurement results satisfy the requirements of accuracy and the heat meter is effective in the heat measurement.展开更多
The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface f...The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.展开更多
Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflo...Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflow measuring are the vital factors for a radiator thermal performance test equipment.Based on the above back-ground,this paper improves the measurement and control system of radiator thermal performance test equip-ment,which improves the accuracy of the radiator thermal performance test equipment.This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment.Theflow rate ranges from 175 kg/h to 178 kg/h under different conditions.The average is 176.5 kg/h and the deviation rates are from 1.62%to 1.97%.The heat produced under various conditions is different.The maximum is 4.3 kW and the minimum is 4.2 kW for condition 1,the maximum is 3.3 kW and the minimum is 3.2 kW for condition 2 and the maximum is 1.95 kW and the minimum is 1.89 kW for condition 3.However,the deviation rate is about 2.9%,which shows that the device has high stability and high precision.This paper studies a new electronic heat cost allocate meter test method by radiator thermal performance test equipment at the same time.This paper tests temperature changes through four measures points and gets a result appeared as a heat backup which should be avoided when using in the test of electronic heat cost allocate meter.Some experiences and references could be gained for further research in the heating system from this test and research.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
近年来,储热技术被广泛认为是实现碳中和、碳达峰的一项关键技术备受关注。通过从CNKI、Web of Science等数据库中筛选储热技术相关文献,运用CiteSpace软件进行知识映射,展开系统分析、统计及可视化,绘制出储热技术研究力量合作网络图谱...近年来,储热技术被广泛认为是实现碳中和、碳达峰的一项关键技术备受关注。通过从CNKI、Web of Science等数据库中筛选储热技术相关文献,运用CiteSpace软件进行知识映射,展开系统分析、统计及可视化,绘制出储热技术研究力量合作网络图谱,展示该技术研究力量的分布与科研合作情况。同时针对关键词进行分析,总结储热技术的研究热点、研究前沿及发展趋势,指出相变储热和混合储热模式是未来研究的重点。针对储热材料稳定性差、使用寿命短,有机相变材料成本高、安全性低,系统设备初始造价高、成本回收期长等储热技术现存问题,从政策干预和市场需求角度提出了改进建议。展开更多
基金Project Supported by Education Department of Liaoning Province(LT2012005)
文摘After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.
基金National Natural Science Foundation of China(No.61071087)Natural Science Foundation of Shandong Province(No.ZR2011FM018)
文摘According to the transit-time difference measurement method,we proposed a design scheme of ultrasonic heat meter based on TDC-GP21.The measurement unit TDC-GP21 mainly completes transit-time measurement and inlet,outlet temperature measurement functions.Control unit and data processing unit based on MSP430F4152 of TI corporation complete functions including peripherals control,data analysis,temperature compensation algorithm,flow pattern compensation algorithm and low power consumption control.The design meets the Town Construction Professional Standard CJ 128-2007,and furthermore,some performances can be improved.
文摘The design of a new type heat meters based on RFID technology are presented in this paper. By use of RFID technology in heat meters, the data can be exchanged between heat meters and heat supplying department by RF cards. The information can be transmitted in a non-contact way. In this way, the purpose of automatic identification can be achieved. The experimental study of the heat meters is also performed in the paper. The results show that the new type of heat meters can meet the demands of users. Compared with the ordinary heat meters, the new type of heat meters have the advantages of small in meter volume, high accuracy, no impact of water quality and good reliability.
文摘Flowing with the reform of the hot water heating method in China, heat meter will enter into households in the near future. A portable ultrasonic heat meter is designed in this paper. The meter uses chip microprocessor MSP430F437 as the data process core, and uses ultrasonic flow sensor to measure flow rate of the hot water, and capture input and output temperatures of the hot water using the thermal resistance sensor Ptl000, and then household energy consumption is calculated via temperature difference between input temperature and output temperature of the hot water multiplied by volume of hot water that is calculated though flow rate integration of hot water. In order to test the performance of the proposed heat meter, experiments is carried out. Both the temperature and flow measurement results satisfy the requirements of accuracy and the heat meter is effective in the heat measurement.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.
基金supported by the Tianjin Science and Technology Project(Project No.19JCTPJC44300)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2018KJ261)Science and Technology Program Project of Jin Nan District Tianjin(Project Nos.201805015&20190111).
文摘Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflow measuring are the vital factors for a radiator thermal performance test equipment.Based on the above back-ground,this paper improves the measurement and control system of radiator thermal performance test equip-ment,which improves the accuracy of the radiator thermal performance test equipment.This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment.Theflow rate ranges from 175 kg/h to 178 kg/h under different conditions.The average is 176.5 kg/h and the deviation rates are from 1.62%to 1.97%.The heat produced under various conditions is different.The maximum is 4.3 kW and the minimum is 4.2 kW for condition 1,the maximum is 3.3 kW and the minimum is 3.2 kW for condition 2 and the maximum is 1.95 kW and the minimum is 1.89 kW for condition 3.However,the deviation rate is about 2.9%,which shows that the device has high stability and high precision.This paper studies a new electronic heat cost allocate meter test method by radiator thermal performance test equipment at the same time.This paper tests temperature changes through four measures points and gets a result appeared as a heat backup which should be avoided when using in the test of electronic heat cost allocate meter.Some experiences and references could be gained for further research in the heating system from this test and research.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘近年来,储热技术被广泛认为是实现碳中和、碳达峰的一项关键技术备受关注。通过从CNKI、Web of Science等数据库中筛选储热技术相关文献,运用CiteSpace软件进行知识映射,展开系统分析、统计及可视化,绘制出储热技术研究力量合作网络图谱,展示该技术研究力量的分布与科研合作情况。同时针对关键词进行分析,总结储热技术的研究热点、研究前沿及发展趋势,指出相变储热和混合储热模式是未来研究的重点。针对储热材料稳定性差、使用寿命短,有机相变材料成本高、安全性低,系统设备初始造价高、成本回收期长等储热技术现存问题,从政策干预和市场需求角度提出了改进建议。