This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source ...This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.展开更多
Changes in prices of homes are hypothesized as correlated with the times of their sale and resale and the attributes of their dwelling unit and neighbourhood and those of neighbouring homes. They may also be correlate...Changes in prices of homes are hypothesized as correlated with the times of their sale and resale and the attributes of their dwelling unit and neighbourhood and those of neighbouring homes. They may also be correlated with the occurrences of events inside the neighbourhoods caused by the activities of </span><span style="font-family:Verdana;">individuals and organizations outside the neighbourhoods, such as whether the local economy is in a recession or has a high unemployment rate. Calibrated hybrid housing price models predict precipitous decreases in house prices of approximately 2900 sold and resold homes in two inner-city neighbourhoods</span> <span style="font-family:Verdana;">in Windsor, Ontario, during those events since 1981 or 1986. Overall modest predicted percentage increases in houses’ prices during more than 30 years therefore subsumed periods of inner-city neighbourhood deterioration i</span><span style="font-family:Verdana;">n </span><span style="font-family:Verdana;">dispersed locations of unimproved and disimproved homes. Compensatory predictions however are of increasing prices for minorities of homes with improvements to several attributes of the dwelling unit and neighbourhood.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41471140,41771178)Liaoning Province Outstanding Youth Program(No.LJQ2015058)
文摘This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.
文摘Changes in prices of homes are hypothesized as correlated with the times of their sale and resale and the attributes of their dwelling unit and neighbourhood and those of neighbouring homes. They may also be correlated with the occurrences of events inside the neighbourhoods caused by the activities of </span><span style="font-family:Verdana;">individuals and organizations outside the neighbourhoods, such as whether the local economy is in a recession or has a high unemployment rate. Calibrated hybrid housing price models predict precipitous decreases in house prices of approximately 2900 sold and resold homes in two inner-city neighbourhoods</span> <span style="font-family:Verdana;">in Windsor, Ontario, during those events since 1981 or 1986. Overall modest predicted percentage increases in houses’ prices during more than 30 years therefore subsumed periods of inner-city neighbourhood deterioration i</span><span style="font-family:Verdana;">n </span><span style="font-family:Verdana;">dispersed locations of unimproved and disimproved homes. Compensatory predictions however are of increasing prices for minorities of homes with improvements to several attributes of the dwelling unit and neighbourhood.