This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and f...This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and frequency domains, and color space transformations. First system used rotational signatures based on a correlation operator;minimum distance was used for the classification task. Second system computed the seven Hu invariants from binary images;these descriptors fed to a Multi-Layer Perceptron (MLP) in order to recognize the 9 different classes. First system achieves 100% of recognition rate with leaving-one-out validation and second experiment performs 96.7% of recognition rate with Hu moments and 100% using 36 normalized moments and k-fold cross validation.展开更多
相比于以单波束测深原理为基础的ICCP、TERCOM等一维序列匹配辅助导航方法,基于多波束测深系统的二维阵列匹配算法增加了原始地形信息的丰富度,可以用来提高地形辅助匹配导航系统的精度和适用性。通过归一化灰度转换,使实时扫测地形和...相比于以单波束测深原理为基础的ICCP、TERCOM等一维序列匹配辅助导航方法,基于多波束测深系统的二维阵列匹配算法增加了原始地形信息的丰富度,可以用来提高地形辅助匹配导航系统的精度和适用性。通过归一化灰度转换,使实时扫测地形和原始数据库地形分别形成待匹配的模板灰度图和背景灰度图,采用圆窗口化搜索策略,分别计算实时图和子图的Hu矩,保证了相同地形特征的旋转不变性。通过归一化互相关算法衡量两个地形的相似性,得到匹配地形,实时的辅助主惯导修正误差。仿真表明,利用此匹配算法在实时扫测地形平坦区域和特征明显区域均能成功匹配;位置误差均在5个网格以内,能容忍的系统信噪比最小为9 d B,抗噪声能力强;Hu矩的抗旋转特性大大提高了此方法的适用性,能够满足高精度水下地形匹配辅助导航系统的苛刻要求。展开更多
文摘This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and frequency domains, and color space transformations. First system used rotational signatures based on a correlation operator;minimum distance was used for the classification task. Second system computed the seven Hu invariants from binary images;these descriptors fed to a Multi-Layer Perceptron (MLP) in order to recognize the 9 different classes. First system achieves 100% of recognition rate with leaving-one-out validation and second experiment performs 96.7% of recognition rate with Hu moments and 100% using 36 normalized moments and k-fold cross validation.
文摘相比于以单波束测深原理为基础的ICCP、TERCOM等一维序列匹配辅助导航方法,基于多波束测深系统的二维阵列匹配算法增加了原始地形信息的丰富度,可以用来提高地形辅助匹配导航系统的精度和适用性。通过归一化灰度转换,使实时扫测地形和原始数据库地形分别形成待匹配的模板灰度图和背景灰度图,采用圆窗口化搜索策略,分别计算实时图和子图的Hu矩,保证了相同地形特征的旋转不变性。通过归一化互相关算法衡量两个地形的相似性,得到匹配地形,实时的辅助主惯导修正误差。仿真表明,利用此匹配算法在实时扫测地形平坦区域和特征明显区域均能成功匹配;位置误差均在5个网格以内,能容忍的系统信噪比最小为9 d B,抗噪声能力强;Hu矩的抗旋转特性大大提高了此方法的适用性,能够满足高精度水下地形匹配辅助导航系统的苛刻要求。